Copper-catalysed unique CO2 to pure formic acid conversion through single-atom alloying

[ad_1]

  • 1.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Wang, X. et al. Environment friendly electrically powered CO2-to-ethanol through suppression of deoxygenation. Nat. Vitality 5, 478–486 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Li, F. et al. Cooperative CO2-to-ethanol conversion through enriched intermediates at molecule–steel catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Morales-Guio, C. G. et al. Improved CO2 discount exercise in the direction of C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Spurgeon, J. M. & Kumar, B. A comparative technoeconomic evaluation of pathways for industrial electrochemical CO2 discount to liquid merchandise. Vitality Environ. Sci. 11, 1536–1551 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Chen, C., Kotyk, J. F. Ok. & Sheehan, S. W. Progress towards industrial software of electrochemical carbon dioxide discount. Chem 4, 2571–2586 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lu, X., Leung, D. Y., Wang, H., Leung, M. Ok. & Xuan, J. Electrochemical discount of carbon dioxide to formic acid. ChemElectroChem 1, 836–849 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Zheng, X. et al. Sulfur-modulated tin websites allow extremely selective electrochemical discount of CO2 to formate. Joule 1, 794–805 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zheng, X. et al. Principle-guided Sn/Cu alloying for environment friendly CO2 electroreduction at low overpotentials. Nat. Catal. 2, 55–61 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Yang, F. et al. Bismuthene for extremely environment friendly carbon dioxide electroreduction response. Nat. Commun. 11, 1088 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Shi, Y. et al. Unveiling hydrocerussite as an electrochemically secure lively part for environment friendly carbon dioxide electroreduction to formate. Nat. Commun. 11, 3145 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 12.

    Kang, X. et al. Quantitative electro-reduction of CO2 to liquid gasoline over electro-synthesized steel–natural frameworks. J. Am. Chem. Soc. 142, 17384–17392 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    De Arquer, F. P. G. et al. CO2 electrolysis to multicarbon merchandise at actions larger than 1 A cm–2. Science 367, 661–666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 14.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid gasoline on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Lv, J. J. et al. A extremely porous copper electrocatalyst for carbon dioxide discount. Adv. Mater. 30, 1803111 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 16.

    Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Cuenya, B. R. The function of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity throughout CO2 pulsed electroreduction. Nat. Vitality 5, 317–325 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 17.

    Xu, H. et al. Extremely selective electrocatalytic CO2 discount to ethanol by metallic clusters dynamically shaped from atomically dispersed copper. Nat. Vitality 5, 623–632 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 merchandise. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Li, J. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at excessive pressures with excessive power conversion effectivity. J. Am. Chem. Soc. 142, 7276–7282 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Tao, Z., Wu, Z., Wu, Y. & Wang, H. Activating copper for electrocatalytic CO2 discount to formate through molecular interactions. ACS Catal. 10, 9271–9275 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Vitality 4, 732–745 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Feaster, J. T. et al. Understanding selectivity for the electrochemical discount of carbon dioxide to formic acid and carbon monoxide on steel electrodes. ACS Catal. 7, 4822–4827 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. Ok. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Vitality Environ. Sci. 3, 1311–1315 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Montoya, J. H., Shi, C., Chan, Ok. & Nørskov, J. Ok. Theoretical insights right into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Zhang, X. et al. Platinum–copper single atom alloy catalysts with excessive efficiency in the direction of glycerol hydrogenolysis. Nat. Commun. 10, 5812 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Yang, M. et al. Figuring out phase-dependent electrochemical stripping efficiency of FeOOH nanorod: proof from kinetic simulation and analyte–materials interactions. Small 16, 1906830 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Xia, C. et al. Steady manufacturing of pure liquid gasoline options through electrocatalytic CO2 discount utilizing solid-electrolyte units. Nat. Vitality 4, 776–785 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 options as much as 20% by weight utilizing a stable electrolyte. Science 366, 226–231 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 discount to high-concentration pure formic acid options in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Moradzaman, M. & Mul, G. Infrared evaluation of interfacial phenomena throughout electrochemical discount of CO2 over polycrystalline copper electrodes. ACS Catal. 10, 8049–8057 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Kim, C. et al. Reaching selective and environment friendly electrocatalytic exercise for CO2 discount utilizing immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Li, Y. et al. Selling CO2 methanation through ligand-stabilized steel oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Kortlever, R., Shen, J., Schouten, Ok. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and response pathways for the electrochemical discount of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Hossain, M. N., Wen, J., Konda, S. Ok., Govindhan, M. & Chen, A. Electrochemical and FTIR spectroscopic examine of CO2 discount at a nanostructured Cu/lowered graphene oxide skinny movie. Electrochem. Commun. 82, 16–20 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Ye, Ok. et al. Synergy results on Sn-Cu alloy catalyst for environment friendly CO2 electroreduction to formate with excessive mass exercise. Sci. Bull. 65, 711–719 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Li, Z. et al. Elucidation of the synergistic impact of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater. 33, 2005113 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 38.

    Chan, Ok. & Nørskov, J. Ok. Potential dependence of electrochemical obstacles from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Chan, Ok. & Nørskov, J. Ok. Electrochemical obstacles made easy. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Guo, C., Fu, X. & Xiao, J. Theoretical insights on the synergy and competitors between thermochemical and electrochemical steps in oxygen electroreduction. J. Phys. Chem. C. 124, 25796–25804 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Li, H., Guo, C., Fu, Q. & Xiao, J. Towards fundamentals of confined electrocatalysis in nanoscale reactors. J. Phys. Chem. Lett. 10, 533–539 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 42.

    Guo, C., Mao, Y., Yao, Z., Chen, J. & Hu, P. Examination of the important thing points in microkinetics: CO oxidation on Rh(1 1 1). J. Catal. 379, 52–59 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Chen, J.-F., Mao, Y., Wang, H.-F. & Hu, P. Reversibility iteration methodology to know response networks and to unravel micro-kinetics in heterogeneous catalysis. ACS Catal. 6, 7078–7087 (2016).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Leave a Comment