Thursday, May 19, 2022
HomeNanotechnologyCost reversal nano-systems for tumor remedy | Journal of Nanobiotechnology

Cost reversal nano-systems for tumor remedy | Journal of Nanobiotechnology


  • 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71:209–49.

    Article 

    Google Scholar
     

  • 2.

    Javarappa KK, Tsallos D, Heckman CA. A multiplexed screening assay to guage chemotherapy-induced myelosuppression utilizing wholesome peripheral blood and bone marrow. SLAS Discov. 2018;23:687–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Most cancers drug resistance: an evolving paradigm. Nat Rev Most cancers. 2013;13:714–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Oun R, Moussa YE, Wheate NJ. The negative effects of platinum-based chemotherapy medicine: a evaluate for chemists. Dalt Trans. 2018;47:6645–53.

    CAS 

    Google Scholar
     

  • 5.

    Islam KM, Anggondowati T, Deviany PE, Ryan JE, Fetrick A, Bagenda D, et al. Affected person preferences of chemotherapy remedy choices and tolerance of chemotherapy negative effects in superior stage lung most cancers. BMC Most cancers. 2019;19:835.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-based drug supply system: a patient-friendly chemotherapy for oncology. Dose-Response. 2020;18:1559325820936161.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Blanco E, Shen H, Ferrari M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat Biotechnol. 2015;33:941–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Dong D, Hsiao CH, Giovanella BC, Wang Y, Chow DSL, Li Z. Sustained supply of a camptothecin prodrug—CZ48 by nanosuspensions with improved pharmacokinetics and enhanced anticancer exercise. Int J Nanomedicine. 2019;14:3799–817.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, et al. Multifunctional aptamer-based nanoparticles for focused drug supply to bypass most cancers resistance. Biomaterials. 2016;91:44–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in most cancers prognosis: progress, challenges and alternatives. J Hematol Oncol. 2019;12:137.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ. Nanotechnology in ovarian most cancers: prognosis and remedy. Life Sci. 2021;266:118914.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Wang J, Wang F, Li X, Zhou Y, Wang H, Zhang Y. Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly(lactic-co-glycolic acid) nano-vehicles for facilitated oral supply of gefitinib, a poorly soluble antitumor compound. Colloids Surfaces B Biointerfaces. 2019;177:425–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Gao J, Nesbitt H, Logan Okay, Burnett Okay, White B, Jack IG, et al. An ultrasound responsive microbubble-liposome conjugate for focused irinotecan-oxaliplatin remedy of pancreatic most cancers. Eur J Pharm Biopharm. 2020;157:233–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, et al. Dimension- and cell type-dependent mobile uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14:6957–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Wang R, Wang X, Jia X, Wang H, Li W, Li J. Impacts of particle dimension on the cytotoxicity, mobile internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in mixed chemotherapy. Int J Pharm. 2020;588:119799.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, et al. Floor cost of supramolecular nanosystems for in vivo biodistribution: a MicroSPECT/CT imaging research. Small. 2020;16:2003290.

    CAS 

    Google Scholar
     

  • 17.

    He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive cost conversion nanocarrier for synergistic remedy. J Management Launch. 2016;229:80–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Qu J, Peng S, Wang R, Yang ST, Zhou QH, Lin J. Stepwise pH-sensitive and biodegradable polypeptide hybrid micelles for enhanced mobile internalization and environment friendly nuclear drug supply. Colloids Surfaces B Biointerfaces. 2019;181:315–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Du Y, Li Y, Li X, Jia C, Wang L, Wang Y, et al. Sequential enzyme activation of a “Professional-Staramine”-based nanomedicine to focus on tumor mitochondria. Adv Funct Mater. 2020;30:1904697.

    CAS 

    Google Scholar
     

  • 20.

    Liu X, Xiang J, Zhu D, Jiang L, Zhou Z, Tang J, et al. Fusogenic reactive oxygen species triggered charge-reversal vector for efficient gene supply. Adv Mater. 2016;28:1743–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Chen M, Music F, Liu Y, Tian J, Liu C, Li R, et al. A twin pH-sensitive liposomal system with charge-reversal and NO technology for overcoming multidrug resistance in most cancers. Nanoscale. 2019;11:3814–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Xu C, Music R, Lu P, Chen J, Zhou Y, Shen G, et al. A pH-responsive charge-reversal drug supply system with tumor-specific drug launch and ROS technology for most cancers remedy. Int J Nanomedicine. 2020;15:65–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Sims LB, Curtis LT, Frieboes HB, Steinbach-Rankins JM. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical most cancers. J Nanobiotechnol. 2016;14:33.


    Google Scholar
     

  • 24.

    Vaughan HJ, Inexperienced JJ, Tzeng SY. Most cancers-targeting nanoparticles for combinatorial nucleic acid supply. Adv Mater. 2020;32:1901081.

    CAS 

    Google Scholar
     

  • 25.

    Ahmedova A, Mihaylova R, Stoykova S, Mihaylova V, Paunova-Krasteva T, Mihaylov L, et al. Enhanced mobile uptake of platinum by a tetracationic Pt(II) nanocapsule and its implications to most cancers remedy. Eur J Pharm Sci. 2020;155:105545.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Wang B, Su X, Liang J, Yang L, Hu Q, Shan X, et al. Synthesis of polymer-functionalized nanoscale graphene oxide with completely different floor cost and its mobile uptake, biosafety and immune responses in Raw264.7 macrophages. Mater Sci Eng C. 2018;90:514–22.

    CAS 

    Google Scholar
     

  • 27.

    Zhang D, Wei L, Zhong M, Xiao L, Li HW, Wang J. The morphology and floor charge-dependent mobile uptake effectivity of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9:5260–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, et al. Tumor-acidity activated floor cost conversion of two-photon fluorescent nanoprobe for enhanced mobile uptake and focused imaging of intracellular hydrogen peroxide. Chem Sci. 2019;10:9351–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Tang H, Li Q, Yan W, Jiang X. Reversing the chirality of floor ligands can enhance the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew Chemie Int Ed. 2021;60:13829–34.

    CAS 

    Google Scholar
     

  • 30.

    Petrini M, Lokerse WJM, Mach A, Hossann M, Merkel OM, Lindner LH. Results of floor cost, PEGylation and functionalization with dipalmitoylphosphatidyldiglycerol on liposome-cell interactions and native drug supply to stable tumors by way of thermosensitive liposomes. Int J Nanomedicine. 2021;16:4045–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Vlasova IM, Saletsky AM. Research of the denaturation of human serum albumin by sodium dodecyl sulfate utilizing the intrinsic fluorescence of albumin. J Appl Spectrosc. 2009;76:536–41.

    CAS 

    Google Scholar
     

  • 32.

    Gitlin I, Carbeck JD, Whitesides GM. Why are proteins charged? Networks of charge-charge interactions in proteins measured by cost ladders and capillary electrophoresis. Angew Chemie Int Ed. 2006;45:3022–60.

    CAS 

    Google Scholar
     

  • 33.

    Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, et al. Cloaking nanoparticles with protein corona protect for focused drug supply. Nat Commun. 2018;9:4548.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and influence on pharmacokinetics. Nat Commun. 2017;8:777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Francia V, Yang Okay, Deville S, Reker-Smit C, Nelissen I, Salvati A. Corona composition can have an effect on the mechanisms cells use to internalize nanoparticles. ACS Nano. 2019;13:11107–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Chen L, Zhao T, Zhao M, Wang W, Solar C, Liu L, et al. Dimension and cost dual-transformable mesoporous nanoassemblies for enhanced drug supply and tumor penetration. Chem Sci. 2020;11:2819–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Hühn D, Kantner Okay, Geidel C, Brandholt S, De Cock I, Soenen SJH, et al. Polymer-coated nanoparticles interacting with proteins and cells: specializing in the signal of the online cost. ACS Nano. 2013;7:3253–63.

    PubMed 

    Google Scholar
     

  • 38.

    Jiang Y, Huo S, Mizuhara T, Das R, Lee YW, Hou S, et al. The interaction of dimension and floor performance on the mobile uptake of sub-10 nm gold nanoparticles. ACS Nano. 2015;9:9986–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H. Impact of floor cost of magnetite nanoparticles on their internalization into breast most cancers and umbilical vein endothelial cells. Colloids Surfaces B Biointerfaces. 2009;71:325–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Zhao X, Lu D, Liu QS, Li Y, Feng R, Hao F, et al. Hematological results of gold nanorods on erythrocytes: hemolysis and hemoglobin conformational and practical adjustments. Adv Sci. 2017;4:1700296.


    Google Scholar
     

  • 41.

    Weiss M, Fan J, Claudel M, Sonntag T, Didier P, Ronzani C, et al. Density of floor cost is a extra predictive issue of the toxicity of cationic carbon nanoparticles than zeta potential. J Nanobiotechnol. 2021;19:5.

    CAS 

    Google Scholar
     

  • 42.

    Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, et al. Endogenous pH-responsive nanoparticles with programmable dimension adjustments for focused tumor remedy and imaging functions. Theranostics. 2018;8:3038–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, et al. PH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent. Nanotechnology. 2018;29:325101.

    PubMed 

    Google Scholar
     

  • 44.

    Kim H, Kim S, Kang S, Music Y, Shin S, Lee S, et al. Ring opening metathesis polymerization of bicyclic α, β-unsaturated anhydrides for ready-to-be-grafted polymers having tailor-made pH-responsive degradability. Angew Chemie – Int Ed. 2018;57:12468–72.

    CAS 

    Google Scholar
     

  • 45.

    Du JZ, Li HJ, Wang J. Tumor-acidity-cleavable maleic acid amide (TACMAA): a strong instrument for designing sensible nanoparticles to beat supply boundaries in most cancers nanomedicine. Acc Chem Res. 2018;51:2848–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Kirby AJ, Lancaster PW. Construction and effectivity in intramolecular and enzymic catalysis. Catalysis of amide hydrolysis by the carboxy-group of substituted maleamic acids. J Chem Soc Perkin Trans 2. 1972;9:1206–14.


    Google Scholar
     

  • 47.

    Aldersley MF, Kirby AJ, Lancaster PW, McDonald RS, Smith CR. Intramolecular catalysis of amide hydrolysis by the carboxy-group. Fee figuring out proton switch from exterior basic acids within the hydrolysis of substituted maleamic acids. J Chem Soc Perkin Trans. 1974;2:1487–95.


    Google Scholar
     

  • 48.

    Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ, et al. Cost-reversal drug conjugate for focused most cancers cell nuclear drug supply. Adv Funct Mater. 2009;19:3580–9.

    CAS 

    Google Scholar
     

  • 49.

    Kang S, Kim Y, Music Y, Choi JU, Park E, Choi W, et al. Comparability of pH-sensitive degradability of maleic acid amide derivatives. Bioorganic Med Chem Lett. 2014;24:2364–7.

    CAS 

    Google Scholar
     

  • 50.

    Yang HY, Jang MS, Li Y, Fu Y, Wu TP, Lee JH, et al. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic remedy. J Management Launch. 2019;301:157–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Cheng F, Pan Q, Gao W, Pu Y, Luo Okay, He B. Reversing chemotherapy resistance by a synergy between lysosomal pH-activated mitochondrial drug supply and erlotinib-mediated drug efflux inhibition. ACS Appl Mater Interfaces. 2021;13:29257–68.

    CAS 

    Google Scholar
     

  • 52.

    Chen Z, Wan L, Yuan Y, Kuang Y, Xu X, Liao T, et al. pH/GSH-dual-sensitive hole mesoporous silica nanoparticle-based drug supply system for focused most cancers remedy. ACS Biomater Sci Eng. 2020;6:3375–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Chang Y, Chen JY, Yang J, Lin T, Zeng L, Xu JF, et al. Concentrating on the cell membrane by charge-reversal amphiphilic pillar[5]arene for the selective killing of most cancers cells. ACS Appl Mater Interfaces. 2019;11:38497–502.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, et al. SiRNA-loaded polyion advanced micelle embellished with charge-conversional polymer tuned to bear stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromol. 2016;17:246–55.

    CAS 

    Google Scholar
     

  • 55.

    Wu S, Zheng L, Li C, Xiao Y, Huo S, Zhang B. Grafted copolymer micelles with pH triggered cost reversibility for environment friendly doxorubicin supply. J Polym Sci Half A Polym Chem. 2017;55:2036–46.

    CAS 

    Google Scholar
     

  • 56.

    Yang Z, Solar N, Cheng R, Zhao C, Liu Z, Li X, et al. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eradicate breast most cancers stem cells. Biomaterials. 2017;147:53–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Zhang X, Zhang C, Cheng M, Zhang Y, Wang W, Yuan Z. Twin pH-responsive “charge-reversal like” gold nanoparticles to reinforce tumor retention for chemo-radiotherapy. Nano Res. 2019;12:2815–26.

    CAS 

    Google Scholar
     

  • 58.

    Torchilin V. Good pharmaceutical nanocarriers. 2016.

  • 59.

    Wang Z, Ma G, Zhang J, Yuan Z, Wang L, Bernards M, et al. Floor protonation/deprotonation managed instantaneous affinity change of nano drug car (NDV) for pH triggered tumor cell concentrating on. Biomaterials. 2015;62:116–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Xie P, Liu P. pH-responsive floor cost reversal carboxymethyl chitosan-based drug supply system for pH and discount dual-responsive triggered DOX launch. Carbohydr Polym. 2020;236:116093.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug supply and mobile imaging. J Colloid Interface Sci. 2019;552:439–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Zhao X, Chen M, Zhang WG, Wang CH, Wang F, You YZ, et al. Polymerization-induced self-assembly to provide prodrug nanoparticles with reduction-responsive camptothecin launch and ph-responsive charge-reversible property. Macromol Speedy Commun. 2020;41:2000260.

    CAS 

    Google Scholar
     

  • 63.

    Dai L, Cai R, Li M, Luo Z, Yu Y, Chen W, et al. Twin-targeted cascade-responsive prodrug micelle system for tumor remedy in vivo. Chem Mater. 2017;29:6976–92.

    CAS 

    Google Scholar
     

  • 64.

    Karlsson J, Rhodes KR, Inexperienced JJ, Tzeng SY. Poly(beta-amino ester)s as gene supply autos: challenges and alternatives. Knowledgeable Opin Drug Deliv. 2020;17:1395–410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Males W, Zhu P, Dong S, Liu W, Zhou Okay, Bai Y, et al. Fabrication of twin pH/redox-responsive lipid-polymer hybrid nanoparticles for anticancer drug supply and managed launch. Int J Nanomedicine. 2019;14:8001–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Males W, Zhu P, Dong S, Liu W, Zhou Okay, Bai Y, et al. Layer-by-layer pH-sensitive nanoparticles for drug supply and managed launch with improved therapeutic efficacy in vivo. Drug Deliv. 2020;27:180–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Li F, Wang Y, Chen WL, Wang DD, Zhou YJ, You BG, et al. Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation impact by way of multi-functional nanoparticles for orthotopic Non-Small cell lung most cancers remedy. Theranostics. 2019;9:5886–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Dube B, Pandey A, Joshi G, Sawant Okay. Hydrophobically modified polyethylenimine-based ternary complexes for concentrating on mind tumor: stability, in vitro and in vivo research. Artif Cells Nanomedicine Biotechnol. 2017;45:1685–98.

    CAS 

    Google Scholar
     

  • 69.

    Lin YN, Su L, Smolen J, Li R, Music Y, Wang H, et al. Co-assembly of sugar-based amphiphilic block polymers to realize nanoparticles with tunable morphology, dimension, floor cost, and acid-responsive conduct. Mater Chem Entrance. 2018;2:2230–8.

    CAS 

    Google Scholar
     

  • 70.

    Hu J, Miura S, Na Okay, Bae YH. PH-responsive and cost shielded cationic micelle of poly(l-histidine)- block-short branched PEI for acidic most cancers remedy. J Management Launch. 2013;172:69–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Tan J, Wang H, Xu F, Chen Y, Zhang M, Peng H, et al. Poly-γ-glutamic acid-based GGT-targeting and floor camouflage technique for enhancing cervical most cancers gene remedy. J Mater Chem B. 2017;5:1315–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Jia N, Li W, Liu D, Wu S, Music B, Ma J, et al. Tumor microenvironment stimuli-responsive nanoparticles for programmed anticancer drug supply. Mol Pharm. 2020;17:1516–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Chen MM, Music FF, Feng M, Liu Y, Liu YY, Tian J, et al. pH-sensitive charge-conversional and NIR responsive bubble-generating liposomal system for synergetic thermo-chemotherapy. Colloids Surfaces B Biointerfaces. 2018;167:104–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic supplies and their derivatives for organic functions. Adv Mater. 2010;22:920–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Qin Z, Chen T, Teng W, Jin Q, Ji J. Combined-charged zwitterionic polymeric micelles for tumor acidic setting responsive intracellular drug supply. Langmuir. 2019;35:1242–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D. Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug supply. Biomater Sci. 2019;7:3238–48.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, et al. Poly(l-glutamic acid)-based zwitterionic polymer in a cost conversional shielding system for gene remedy of malignant tumors. ACS Appl Mater Interfaces. 2020;12:19295–306.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Peng S, Males Y, Xie R, Tian Y, Yang W. Biodegradable phosphorylcholine-based zwitterionic polymer nanogels with sensible charge-conversion capability for environment friendly inhibition of tumor cells. J Colloid Interface Sci. 2019;539:19–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Zhang X, Zhang Okay, Haag R. Multi-stage, cost conversional, stimuli-responsive nanogels for therapeutic protein supply. Biomater Sci. 2015;3:1487–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Tan JX, Wang XY, Li HY, Su XL, Wang L, Ran L, et al. HYAL1 overexpression is correlated with the malignant conduct of human breast most cancers. Int J Most cancers. 2011;128:1303–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Sperker B, Werner U, Murdter TE, Tekkaya C, Fritz P, Wacke R, et al. Expression and performance of β-glucuronidase in pancreatic most cancers: Potential function in drug concentrating on. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:110–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Obrador E, Carretero J, Ortega A, Medina I, Rodilla V, Pellicer JA, et al. γ-glutamyl transpeptidase overexpression will increase metastatic progress of B16 melanoma cells within the mouse liver. Hepatology. 2002;35:74–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Niu R, Jing H, Chen Z, Xu J, Dai J, Yan Z. Differentiating malignant colorectal tumor sufferers from benign colorectal tumor sufferers by assaying morning urinary arylsulfatase exercise. Asia Pac J Clin Oncol. 2012;8:362–7.

    PubMed 

    Google Scholar
     

  • 84.

    Qiu N, Liu X, Zhong Y, Zhou Z, Piao Y, Miao L, et al. Esterase-activated charge-reversal polymer for fibroblast-exempt most cancers gene remedy. Adv Mater. 2016;28:10613–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and remedy efficacy. Nat Nanotechnol. 2019;14:799–809.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    He Y, Lei L, Cao J, Yang X, Cai S, Tong F, et al. A combinational chemo-immune remedy utilizing an enzyme-sensitive nanoplatform for dual-drug supply to particular websites by cascade concentrating on. Sci Adv. 2021;7:eaba0776.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in most cancers remedy: the brilliant facet of the moon. Exp Mol Med. 2020;52:192–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Dai L, Li X, Duan X, Li M, Niu P, Xu H, et al. A pH/ROS cascade-responsive charge-reversal nanosystem with self-amplified drug launch for synergistic oxidation-chemotherapy. Adv Sci. 2019;6:1801807.


    Google Scholar
     

  • 89.

    Jiang XC, Xiang JJ, Wu HH, Zhang TY, Zhang DP, Xu QH, et al. Neural stem cells transfected with reactive oxygen species-responsive polyplexes for efficient remedy of ischemic stroke. Adv Mater. 2019;31:1807591.


    Google Scholar
     

  • 90.

    Liu R, Yang J, Liu L, Lu Z, Shi Z, Ji W, et al. An “Amyloid-β Cleaner” for the remedy of Alzheimer’s illness by normalizing microglial dysfunction. Adv Sci. 2020;7:1901555.

    CAS 

    Google Scholar
     

  • 91.

    Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, et al. Traceable nanoparticles with twin concentrating on and ROS response for RNAi-based immunochemotherapy of intracranial glioblastoma remedy. Adv Mater. 2018;30:1705054.


    Google Scholar
     

  • 92.

    Wang Y, Li C, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for environment friendly and focused gene supply. Chinese language Chem Lett. 2019;31:275–80.


    Google Scholar
     

  • 93.

    Li J, Wei Z, Lin X, Zheng D, Wu M, Liu X, et al. Programmable therapeutic nanodevices with round amplification of H2O2 within the tumor microenvironment for synergistic most cancers remedy. Adv Healthc Mater. 2019;8:1801627.


    Google Scholar
     

  • 94.

    Yeung PK, Kolathuru SS, Mohammadizadeh S, Akhoundi F, Linderfield B. Adenosine 5’-triphosphate metabolism in purple blood cells as a possible biomarker for post-exercise hypotension and a drug goal for cardiovascular safety. Metabolites. 2018;8:30.

    PubMed Central 

    Google Scholar
     

  • 95.

    Tang X, Fan X, Zhao X, Su W. Triton X-100-modified adenosine triphosphate-responsive siRNA supply agent for antitumor remedy. Mol Pharm. 2020;17:3696–708.

    PubMed 

    Google Scholar
     

  • 96.

    Mimoto F, Tatsumi Okay, Shimizu S, Kadono S, Haraya Okay, Nagayasu M, et al. Exploitation of elevated extracellular ATP to particularly direct antibody to tumor microenvironment. Cell Rep. 2020;33:108542.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Kim J, Lee YM, Kim H, Park D, Kim J, Kim WJ. Phenylboronic acid-sugar grafted polymer structure as a twin stimuli-responsive gene service for focused anti-angiogenic tumor remedy. Biomaterials. 2016;75:102–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Zhou Z, Zhang M, Liu Y, Li C, Zhang Q, Oupicky D, et al. Reversible covalent cross-linked polycations with enhanced stability and ATP-responsive conduct for improved siRNA supply. Biomacromol. 2018;19:3776–87.

    CAS 

    Google Scholar
     

  • 99.

    Jiang C, Wang Y, Liang P, Chen Y, Zhuang Z, Zhang L, et al. ATP-responsive multifunctional supramolecular polymer as a nonviral vector for reinforcing ldl cholesterol removing from lipid-laden macrophages. ACS Biomater Sci Eng. 2021;7:5048–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Zhou Z, Zhang Q, Zhang M, Li H, Chen G, Qian C, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA supply and most cancers remedy. Theranostics. 2018;8:4604–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Zhou Z, Liu Y, Zhang M, Li C, Yang R, Li J, et al. Dimension Switchable nanoclusters fueled by extracellular ATP for selling deep penetration and MRI-guided tumor photothermal remedy. Adv Funct Mater. 2019;29:1904144.


    Google Scholar
     

  • 102.

    Uǧuzdoǧan E, Denkbaş EB, Tuncel A. RNA-sensitive N-isopropylacrylamide/vinylphenylboronic acid random copolymer. Macromol Biosci. 2002;2:214–22.


    Google Scholar
     

  • 103.

    Yoshinaga N, Ishii T, Naito M, Endo T, Uchida S, Cabral H, et al. Polyplex micelles with phenylboronate/gluconamide cross-linking within the core exerting promoted gene transfection by way of spatiotemporal responsivity to intracellular pH and ATP focus. J Am Chem Soc. 2017;139:18567–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Naito M, Ishii T, Matsumoto A, Miyata Okay, Miyahara Y, Kataoka Okay. A phenylboronate-functionalized polyion advanced micelle for ATP-triggered launch of siRNA. Angew Chemie Int Ed. 2012;51:10751–5.

    CAS 

    Google Scholar
     

  • 105.

    Zhou Z, Zhang Q, Yang R, Wu H, Zhang M, Qian C, et al. ATP-charged nanoclusters allow intracellular protein supply and exercise modulation for most cancers theranostics. iScience. 2020;23:100872.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Estrela JM, Ortega A, Obrador E. Glutathione in most cancers biology and remedy. Crit Rev Clin Lab Sci. 2006;43:143–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Cui L, Liu W, Liu H, Qin Q, Wu S, He S, et al. Cascade-targeting of charge-reversal and disulfide bonds shielding for environment friendly dox supply of multistage delicate msns-cos-ss-cmc. Int J Nanomedicine. 2020;15:6153–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Yue D, Cheng G, He Y, Nie Y, Jiang Q, Cai X, et al. Affect of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene supply. J Mater Chem B. 2014;2:7210–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein supply. Adv Mater. 2018;30:1801198.


    Google Scholar
     

  • 110.

    Wang Y, Zhu L, Wang Y, Li L, Lu Y, Shen L, et al. Ultrasensitive GSH-responsive ditelluride-containing poly(ether-urethane) nanoparticles for managed drug launch. ACS Appl Mater Interfaces. 2016;8:35106–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Xia X, Shi J, Deng Q, Xu N, Huang F, Xiang X. Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug supply and enhanced remedy effectivity. Mater Right now Chem. 2022;23:100660.


    Google Scholar
     

  • 112.

    Pang Z, Zhou J, Solar C. Ditelluride-bridged PEG-PCL copolymer as folic acid-targeted and redox-responsive nanoparticles for enhanced most cancers remedy. Entrance Chem. 2020;8:156.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Li L, Zhang P, Yang X, Li C, Guo Y, Solar Okay. Self-assembly of a disulfide-containing core/shell nanocomplex with intracellular environment-sensitive facilitated endo-lysosomal escape for enhanced antitumor efficacy. J Mater Sci. 2020;56(6):4380–95.


    Google Scholar
     

  • 114.

    He X, Zhang J, Li C, Zhang Y, Lu Y, Zhang Y, et al. Enhanced bioreduction-responsive diselenide-based dimeric prodrug nanoparticles for triple unfavourable breast most cancers remedy. Theranostics. 2018;8:4884.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug supply programs of tumor microenvironment. J Nanobiotechnol. 2018;16:74.


    Google Scholar
     

  • 116.

    Wei C, Zhang Y, Music Z, Xia Y, Xu H, Lang M. Enhanced bioreduction-responsive biodegradable diselenide-containing poly(ester urethane) nanocarriers. Biomater Sci. 2017;5:669–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Zhai S, Hu X, Hu Y, Wu B, Xing D. Seen light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug launch and mixture chemotherapy. Biomaterials. 2017;121:41–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    An P, Gu D, Gao Z, Fan F, Jiang Y, Solar B. Hypoxia-Augmented and photothermally-enhanced ferroptotic remedy with excessive specificity and effectivity. J Mater Chem B. 2019;8:78–87.

    PubMed 

    Google Scholar
     

  • 119.

    Zhang H, Kong X, Tang Y, Lin W. Hydrogen sulfide triggered charge-reversal micelles for cancer-targeted drug supply and imaging. ACS Appl Mater Interfaces. 2016;8:16227–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Richardson JJ, Tardy BL, Ejima H, Guo J, Cui J, Liang Okay, et al. Thermally induced cost reversal of layer-by-layer assembled single-component polymer movies. ACS Appl Mater Interfaces. 2016;8:7449–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Mixed Fenton and hunger therapies utilizing hemoglobin and glucose oxidase. Nanoscale. 2019;11:5705–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Liao J, Peng H, Wei X, Music Y, Liu C, Li D, et al. A bio-responsive 6-mercaptopurine/doxorubicin primarily based “Click on Chemistry” polymeric prodrug for most cancers remedy. Mater Sci Eng C. 2020;108:110461.

    CAS 

    Google Scholar
     

  • 123.

    Wang L, Du J, Han X, Dou J, Shen J, Yuan J. Self-crosslinked keratin nanoparticles for pH and GSH twin responsive drug carriers. J Biomater Sci Polym Ed. 2020;31:1994–2006.

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Dai L, Li X, Zheng X, Fu Z, Yao M, Meng S, et al. TGF-β blockade-improved chemo-immunotherapy with pH/ROS cascade-responsive micelle by way of tumor microenvironment transforming. Biomaterials. 2021;276:121010.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Li C, Wang Y, Zhang S, Zhang J, Wang F, Solar Y, et al. pH and ROS sequentially responsive podophyllotoxin prodrug micelles with floor charge-switchable and self-amplification drug launch for combating multidrug resistance most cancers. Drug Deliv. 2021;28:680–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Wang M, Xiao Y, Li Y, Wu J, Li F, Ling D, et al. Reactive oxygen species and near-infrared mild dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance. Eur J Pharm Sci. 2019;134:185–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Zhang P, Wang Y, Lian J, Shen Q, Wang C, Ma B, et al. Engineering the floor of sensible nanocarriers utilizing a pH-/Thermal-/GSH-responsive polymer zipper for exact tumor concentrating on remedy in vivo. Adv Mater. 2017;29:1702311.


    Google Scholar
     

  • 128.

    Makhlouf ASH, Abu-Thabit NY. Stimuli responsive polymeric nanocarriers for drug supply functions, quantity 1 : Sorts and triggers. Woodhead Publishing; 2018.

  • 129.

    Makhlouf ASH, Abu-Thabit NY. Stimuli responsive polymeric nanocarriers for drug supply functions. Quantity 2: Superior nanocarriers for therapeutics. Woodhead Publishing; 2019.

  • 130.

    Gou J, Liang Y, Miao L, Guo W, Chao Y, He H, et al. Improved tumor tissue penetration and tumor cell uptake achieved by delayed cost reversal nanoparticles. Acta Biomater. 2017;62:157–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Zhang H, Pei M, Liu P. pH-Activated floor charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX supply. Int J Biol Macromol. 2020;150:1104–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Li L, Zhang P, Li C, Guo Y, Solar Okay. In vitro/vivo antitumor research of modified-chitosan/carboxymethyl chitosan “boosted” charge-reversal nanoformulation. Carbohydr Polym. 2021;269:118268.

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Niu X, Cao J, Zhang Y, Gao X, Cheng M, Liu Y, et al. A glutathione responsive nitric oxide launch system primarily based on charge-reversal chitosan nanoparticles for enhancing synergistic impact in opposition to multidrug resistance tumor. Nanomedicine Nanotechnol Biol Med. 2019;20:102015.

    CAS 

    Google Scholar
     

  • 134.

    Xia C, Yin S, Xu S, Ran G, Deng M, Mei L, et al. Low molecular weight heparin-coated and dendrimer-based core-shell nanoplatform with enhanced immune activation and a number of anti-metastatic results for melanoma remedy. Theranostics. 2019;9:337–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Feng W, Zong M, Wan L, Yu X, Yu W. PH/redox sequentially responsive nanoparticles with dimension shrinkage properties obtain deep tumor penetration and reversal of multidrug resistance. Biomater Sci. 2020;8:4767–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Naeem M, Oshi MA, Kim J, Lee J, Cao J, Nurhasni H, et al. pH-triggered floor charge-reversal nanoparticles alleviate experimental murine colitis by way of selective accumulation in infected colon areas. Nanomedicine Nanotechnol Biol Med. 2018;14:823–34.

    CAS 

    Google Scholar
     

  • 137.

    Jahanshahi M, Kowsari E, Haddadi-Asl V, Khoobi M, Lee JH, Kadumudi FB, et al. Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with cost switching properties for efficient most cancers cell concentrating on. Int J Pharm. 2019;572:118791.

    CAS 
    PubMed 

    Google Scholar
     

  • 138.

    Sood A, Gupta A, Agrawal G. Current advances in polysaccharides primarily based biomaterials for drug supply and tissue engineering functions. Carbohydr Polym Technol Appl. 2021;2:100067.


    Google Scholar
     

  • 139.

    Khan T, Date A, Chawda H, Patel Okay. Polysaccharides as potential anticancer brokers—a evaluate of their progress. Carbohydr Polym. 2019;210:412–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Yi Y, Xu W, Wang HX, Huang F, Wang LM. Pure polysaccharides expertise physiochemical and practical adjustments throughout preparation: a evaluate. Carbohydr Polym. 2020;234:115896.

    PubMed 

    Google Scholar
     

  • 141.

    Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid supply. Adv Drug Deliv Rev. 2016;97:204–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid primarily based self-assembling nanosystems for CD44 goal mediated siRNA supply to stable tumors. Biomaterials. 2013;34:3489–502.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Zhang X, Pan J, Yao M, Palmerston Mendes L, Sarisozen C, Mao S, et al. Cost reversible hyaluronic acid-modified dendrimer-based nanoparticles for siMDR-1 and doxorubicin co-delivery. Eur J Pharm Biopharm. 2020;154:43–9.

    PubMed 

    Google Scholar
     

  • 144.

    Du X, Yin S, Wang Y, Gu X, Wang G, Li J. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug supply and enhanced biocompatibility. Carbohydr Polym. 2018;202:513–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Ke Z, Yang L, Wu H, Li Z, Jia X, Zhang Z. Analysis of in vitro and in vivo antitumor results of gambogic acid-loaded layer-by-layer self-assembled micelles. Int J Pharm. 2018;545:306–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Jana S, Jana S. Purposeful chitosan: Drug supply and biomedical functions. Springer; 2020.


    Google Scholar
     

  • 147.

    Ailincai D, Mititelu LT, Marin L. Drug supply programs primarily based on biocompatible Imino-Chitosan hydrogels for native anticancer remedy. Drug Deliv. 2018;25:1080–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U. Lipid coated chitosan-DNA nanoparticles for enhanced gene supply. Int J Pharm. 2018;535:473–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan-based nanomaterials: a state-of-the-art evaluate. Int J Biol Macromol. 2013;59:46–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Sheng Y, Dai W, Gao J, Li H, Tan W, Wang J, et al. pH-sensitive drug supply primarily based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Mater Sci Eng C. 2020;112:110888.

    CAS 

    Google Scholar
     

  • 151.

    Zhao X, Wei Z, Zhao Z, Miao Y, Qiu Y, Yang W, et al. Design and growth of graphene oxide nanoparticle/chitosan hybrids exhibiting pH-sensitive floor charge-reversible capability for environment friendly intracellular doxorubicin supply. ACS Appl Mater Interfaces. 2018;10:6608–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Chai M, Gao Y, Liu J, Deng Y, Hu D, Jin Q, et al. Polymyxin B-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial exercise for acute lung an infection administration. Adv Healthc Mater. 2020;9:1901542.

    CAS 

    Google Scholar
     

  • 153.

    Xu W, Wang J, Qian J, Hou G, Wang Y, Ji L, et al. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal remedy of breast most cancers. Mater Sci Eng C. 2019;103:109854.

    CAS 

    Google Scholar
     

  • 154.

    Fang L, Zhang W, Wang Z, Fan X, Cheng Z, Hou X, et al. Novel mitochondrial concentrating on charge-reversal polysaccharide hybrid shell/core nanoparticles for extended systemic circulation and antitumor drug supply. Drug Deliv. 2019;26:1125–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Mariadoss AVA, Saravanakumar Okay, Sathiyaseelan A, Venkatachalam Okay, Wang MH. Folic acid functionalized starch encapsulated inexperienced synthesized copper oxide nanoparticles for focused drug supply in breast most cancers remedy. Int J Biol Macromol. 2020;164:2073–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Wu L, Zhang L, Shi G, Ni C. Zwitterionic pH/redox nanoparticles primarily based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater Sci Eng C. 2016;61:278–85.

    CAS 

    Google Scholar
     

  • 157.

    Mathews PD, Fernandes Patta ACM, Gonçalves JV, Gama GDS, Garcia ITS, Mertins O. Focused drug supply and remedy of endoparasites with biocompatible particles of pH-responsive construction. Biomacromol. 2018;19:499–510.

    CAS 

    Google Scholar
     

  • 158.

    Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y. Proof for receptor-mediated hepatic uptake of pullulan in rats. J Management Launch. 2001;70:365–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, et al. Nanoparticles constructed from novel starch derivatives for transdermal drug supply. J Management Launch. 2010;141:85–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, et al. Ring opening polymerization of α-amino acids: advances in synthesis, structure and functions of polypeptides and their hybrids. Chem Soc Rev. 2020;49:4737–834.

    CAS 
    PubMed 

    Google Scholar
     

  • 161.

    Deng C, Zhang Q, Guo J, Zhao X, Zhong Z. Sturdy and sensible polypeptide-based nanomedicines for focused tumor remedy. Adv Drug Deliv Rev Elsevier. 2020;160:199–211.

    CAS 

    Google Scholar
     

  • 162.

    Blocher McTigue WC, Perry SL. Design guidelines for encapsulating proteins into advanced coacervates. Delicate Matter. 2019;15:3089–103.

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Qu J, Wang R, Peng S, Shi M, Yang ST, Luo JB, et al. Stepwise twin pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced mobile uptake and efficient most cancers remedy. J Mater Chem B. 2019;7:7129–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 164.

    Li Q, Fu D, Zhang J, Yan H, Wang H, Niu B, et al. Twin stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of a number of medicine in most cancers remedy. Colloids Surfaces B Biointerfaces. 2021;200:111586.

    CAS 
    PubMed 

    Google Scholar
     

  • 165.

    Huo Q, Zhu J, Niu Y, Shi H, Gong Y, Li Y, et al. PH-triggered floor charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in most cancers. Int J Nanomedicine. 2017;12:8631–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 166.

    Xie D, Du J, Bao M, Zhou A, Tian C, Xue L, et al. A one-pot modular meeting technique for triple-play enhanced cytosolic siRNA supply. Biomater Sci. 2019;7:901–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 167.

    Tekade RK. Primary fundamentals of drug supply. In: Tekade RK, editor. Primary fundamentals of drug supply. Educational Press; 2018.


    Google Scholar
     

  • 168.

    Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as environment friendly drug and gene supply nanosystems for most cancers remedy. Appl Mater Right now. 2018;12:177–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 169.

    Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene supply with excessive transfection effectivity. J Gene Med. 2019;21:e3101.

    PubMed 

    Google Scholar
     

  • 170.

    Wang Y, Hu W, Ding B, Chen D, Cheng L. cRGD mediated redox and pH twin responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for effectively intracellular antitumor drug supply. Colloids Surfaces B Biointerfaces. 2020;194:111195.

    CAS 
    PubMed 

    Google Scholar
     

  • 171.

    Wang J, Cooper RC, Yang H. Polyamidoamine dendrimer grafted with an acid-responsive charge-reversal layer for improved gene supply. Biomacromol. 2020;21:4008–16.

    CAS 

    Google Scholar
     

  • 172.

    Yuan W, Li H. Chapter 14—polymer-based nanocarriers for therapeutic nucleic acids supply. In: Andronescu E, Grumezescu AM, editors. Nanostructures for drug supply. Elsevier; 2017. p. 445–60.


    Google Scholar
     

  • 173.

    Li X, Xu Q, Zhang P, Zhao X, Wang Y. Cutaneous microenvironment responsive microneedle patch for fast gene launch to deal with subdermal tumor. J Management Launch. 2019;314:72–80.

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments