Moiré trions in MoSe2/WSe2 heterobilayers

[ad_1]

  • 1.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Jin, C. et al. Statement of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Seyler, Okay. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Tran, Okay. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Baek, H. et al. Extremely energy-tunable quantum gentle from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Combescot, M., Betbeder-Matibet, O. & Dubin, F. The numerous-body physics of composite bosons. Phys. Rep. 463, 215–320 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article 

    Google Scholar
     

  • 17.

    Wilson, N. R. et al. Willpower of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article 

    Google Scholar
     

  • 18.

    Ruiz-Tijerina, D. A. & Fal’Ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Yu, H. et al. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).

    Article 

    Google Scholar
     

  • 22.

    McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Wang, Z., Zhao, L., Mak, Okay. F. & Shan, J. Probing the spin-polarized digital band construction in monolayer transition metallic dichalcogenides by optical spectroscopy. Nano Lett. 17, 740–746 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Mak, Okay. F. et al. Tightly sure trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Ross, J. S. et al. Electrical management of impartial and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article 

    Google Scholar
     

  • 26.

    Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Bondarev, I. V. & Vladimirova, M. R. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Phys. Rev. B 97, 165419 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Jauregui, L. A. et al. Electrical management of interlayer exciton dynamics in atomically skinny heterostructures. Science 366, 870–875 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Rivera, P. et al. Statement of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2020).

    Article 

    Google Scholar
     

  • 31.

    Wang, T. et al. Big valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Ciarrocchi, A. et al. Polarization switching and electrical management of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical choice guidelines in van der Waals heterobilayers. 2D Mater 5, 035021 (2018).

    Article 

    Google Scholar
     

  • 34.

    He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020).

    CAS 

    Google Scholar
     

  • 35.

    Movva, H. C. P. et al. Density-dependent quantum corridor states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article 

    Google Scholar
     

  • [ad_2]

    Leave a Comment