Nano primarily based drug supply methods: current developments and future prospects | Journal of Nanobiotechnology

0
377

[ad_1]

  • 1.

    Swamy MK, Sinniah UR. Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological elements. Ind Crops Prod. 2016;87:161–76.

    CAS
    Article

    Google Scholar

  • 2.

    Mohanty SK, Swamy MK, Sinniah UR, Anuradha M. Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological elements. Molecules. 1019;2017:22.


    Google Scholar

  • 3.

    Rodrigues T, Reker D, Schneider P, Schneider G. Relying on pure merchandise for drug design. Nat Chem. 2016;8:531.

    CAS
    Article

    Google Scholar

  • 4.

    Siddiqui AA, Iram F, Siddiqui S, Sahu Ok. Position of pure merchandise in drug discovery course of. Int J Drug Dev Res. 2014;6(2):172–204.

    CAS

    Google Scholar

  • 5.

    Beutler JA. Pure merchandise as a basis for drug discovery. Curr Prot Pharmacol. 2009;46(1):9–11.


    Google Scholar

  • 6.

    Thilakarathna SH, Rupasinghe H. Flavonoid bioavailability and makes an attempt for bioavailability enhancement. Vitamins. 2013;5:3367–87.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 7.

    Bonifácio BV, da Silva PB, dos Santos Ramos MA, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug supply methods and natural medicines: a evaluation. Int J Nanomed. 2014;9:1.

    Article
    CAS

    Google Scholar

  • 8.

    Watkins R, Wu L, Zhang C, Davis RM, Xu B. Pure product-based nanomedicine: current advances and points. Int J Nanomed. 2015;10:6055.

    CAS

    Google Scholar

  • 9.

    Martinho N, Damgé C, Reis CP. Current advances in drug supply methods. J Biomater Nanobiotechnol. 2011;2:510.

    CAS
    Article

    Google Scholar

  • 10.

    Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A evaluation of drug supply methods primarily based on nanotechnology and inexperienced chemistry: inexperienced nanomedicine. Int J Nanomed. 2017;12:2957.

    CAS
    Article

    Google Scholar

  • 11.

    Liu Z, Tabakman S, Welsher Ok, Dai H. Carbon nanotubes in biology and drugs: in vitro and in vivo detection, imaging and drug supply. Nano Res. 2009;2:85–120.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 12.

    Orive G, Gascon AR, Hernández RM, Domı́nguez-Gil A, Pedraz JL. Strategies: new approaches to the supply of biopharmaceuticals. Developments Pharmacol Sci. 2004;25:382–7.

    CAS
    PubMed
    Article

    Google Scholar

  • 13.

    Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Built-in microsystems for managed drug supply. Adv Drug Deliv Rev. 2004;56:185–98.

    PubMed
    Article
    CAS

    Google Scholar

  • 14.

    Arayne MS, Sultana N, Qureshi F. nanoparticles in supply of cardiovascular medicine. Pak J Pharm Sci. 2007;20:340–8.

    CAS
    PubMed

    Google Scholar

  • 15.

    Patra JK, Baek Ok-H. Inexperienced nanobiotechnology: elements affecting synthesis and characterization methods. J Nanomater. 2014;2014:219.

    Article
    CAS

    Google Scholar

  • 16.

    Joseph RR, Venkatraman SS. Drug supply to the attention: what advantages do nanocarriers supply? Nanomedicine. 2017;12:683–702.

    CAS
    PubMed
    Article

    Google Scholar

  • 17.

    Mirza AZ, Siddiqui FA. Nanomedicine and drug supply: a mini evaluation. Int Nano Lett. 2014;4:94.

    Article
    CAS

    Google Scholar

  • 18.

    Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternate options towards drug-resistant pathogenic microbes. Molecules. 2016;21:836.

    Article
    CAS

    Google Scholar

  • 19.

    Lam P-L, Wong W-Y, Bian Z, Chui C-H, Gambari R. Current advances in inexperienced nanoparticulate methods for drug supply: environment friendly supply and security concern. Nanomedicine. 2017;12:357–85.

    CAS
    PubMed
    Article

    Google Scholar

  • 20.

    Haba Y, Kojima C, Harada A, Ura T, Horinaka H, Kono Ok. Preparation of poly (ethylene glycol)-modified poly (amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating capacity. Langmuir. 2007;23:5243–6.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 21.

    Shi X, Solar Ok, Baker JR Jr. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C. 2008;112:8251–8.

    CAS
    Article

    Google Scholar

  • 22.

    Park S-H, Oh S-G, Mun J-Y, Han S-S. Loading of gold nanoparticles contained in the DPPC bilayers of liposome and their results on membrane fluidities. Coll Surf B. 2006;48:112–8.

    CAS
    Article

    Google Scholar

  • 23.

    de Villiers MM, Aramwit P, Kwon GS. Nanotechnology in drug supply. New York: Springer; 2008.


    Google Scholar

  • 24.

    Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic® block copolymers: novel purposeful molecules for gene remedy. Adv Drug Deliv Rev. 2002;54:223–33.

    CAS
    PubMed
    Article

    Google Scholar

  • 25.

    Wang N, Feng Y. Elaborating the function of pure products-induced autophagy in most cancers remedy: achievements and artifacts within the cutting-edge. BioMed Res Int. 2015;2015:934207.

    PubMed
    PubMed Central

    Google Scholar

  • 26.

    Ouattara B, Simard RE, Holley RA. Piette GJ-P, Bégin A: Antibacterial exercise of chosen fatty acids and important oils towards six meat spoilage organisms. Int J Meals Microbiol. 1997;37:155–62.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 27.

    Sharma G, Raturi Ok, Dang S, Gupta S, Gabrani R. Combinatorial antimicrobial impact of curcumin with chosen phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res. 2014;16:535–41.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 28.

    Abdelwahab SI, Sheikh BY, Taha MME, How CW, Abdullah R, Yagoub U, El-Sunousi R, Eid EE. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomed. 2013;8:2163.

    Article
    CAS

    Google Scholar

  • 29.

    Krauel Ok, Pitaksuteepong T, Davies NM, Rades T. Entrapment of bioactive molecules in poly (alkylcyanoacrylate) nanoparticles. Am J Drug Deliv. 2004;2:251–9.

    CAS
    Article

    Google Scholar

  • 30.

    Tan Q, Liu W, Guo C, Zhai G. Preparation and analysis of quercetin-loaded lecithin-chitosan nanoparticles for topical supply. Int J Nanomed. 2011;6:1621.

    CAS
    Article

    Google Scholar

  • 31.

    Sanna V, Roggio AM, Siliani S, Piccinini M, Marceddu S, Mariani A, Sechi M. Improvement of novel cationic chitosan-and anionic alginate–coated poly (d, l-lactide-co-glycolide) nanoparticles for managed launch and light-weight safety of resveratrol. Int J Nanomed. 2012;7:5501.

    CAS

    Google Scholar

  • 32.

    Casettari L, Illum L. Chitosan in nasal supply methods for therapeutic medicine. J Management Launch. 2014;190:189–200.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 33.

    Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra Ok, Ferro VA. Delivering pure merchandise and biotherapeutics to enhance drug efficacy. Ther Deliv. 2017;8:947–56.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 34.

    Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based supply of small interfering RNA: challenges for most cancers remedy. Int J Nanomed. 2012;7:3637.


    Google Scholar

  • 35.

    McNamara Ok, Tofail SA. Nanosystems: using nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical purposes. Phys Chem Chem Phys. 2015;17:27981–95.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 36.

    Saadeh Y, Vyas D. Nanorobotic purposes in drugs: present proposals and designs. Am J Robotic Surg. 2014;1:4–11.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 37.

    Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L. Nanomaterials for analysis: challenges and purposes in sensible gadgets primarily based on molecular recognition. ACS Appl Mater Interfaces. 2014;6:14745–66.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 38.

    De Jong WH, Borm PJ. Drug supply and nanoparticles: purposes and hazards. Int J Nanomed. 2008;3:133.

    Article

    Google Scholar

  • 39.

    Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing purposes: a evaluation. Entrance Chem. 2014;2:63.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 40.

    Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Grasp AM, Sokolsky M, Kabanov AV. In the direction of nanomedicines of the longer term: distant magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Management Launch. 2015;219:43–60.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 41.

    Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Current progress on nanostructures for drug supply purposes. J Nanomater. 2016;2016:20.


    Google Scholar

  • 42.

    Blanco E, Shen H, Ferrari M. Ideas of nanoparticle design for overcoming organic limitations to drug supply. Nat Biotechnol. 2015;33:941.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 43.

    Kumari A, Kumar V, Yadav S. Nanotechnology: a device to reinforce therapeutic values of pure plant merchandise. Developments Med Res. 2012;7:34–42.

    CAS
    Article

    Google Scholar

  • 44.

    Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55:1919–22.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 45.

    Swierczewska M, Han H, Kim Ok, Park J, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev. 2016;99:70–84.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 46.

    Chen Ok, Chen X. Design and growth of molecular imaging probes. Curr Prime Med Chem. 2010;10:1227–36.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 47.

    Yhee JY, Son S, Kim SH, Park Ok, Choi Ok, Kwon IC. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Management Launch. 2014;193:202–13.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 48.

    Lee C-M, Jang D, Kim J, Cheong S-J, Kim E-M, Jeong M-H, Kim S-H, Kim DW, Lim ST, Sohn M-H, et al. Oleyl-Chitosan nanoparticles primarily based on a twin probe for Optical/MR imaging in vivo. Bioconjug Chem. 2011;22:186–92.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 49.

    Yang S-J, Lin F-H, Tsai H-M, Lin C-F, Chin H-C, Wong J-M, Shieh M-J. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials. 2011;32:2174–82.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 50.

    Ryu JH, Na JH, Ko HK, You DG, Park S, Jun E, Yeom HJ, Search engine optimisation DH, Park JH, Jeong SY. Non-invasive optical imaging of cathepsin B with activatable fluorogenic nanoprobes in varied metastatic fashions. Biomaterials. 2014;35:2302–11.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 51.

    Lapčík L, Lapcik L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, construction, properties, and purposes. Chem Rev. 1998;98:2663–84.

    Article

    Google Scholar

  • 52.

    Kim H, Kim Y, Kim I-H, Kim Ok, Choi Y. ROS-responsive activatable photosensitizing agent for imaging and photodynamic remedy of activated macrophages. Theranostics. 2014;4:1.

    Article
    CAS

    Google Scholar

  • 53.

    Choi KY, Chung H, Min KH, Yoon HY, Kim Ok, Park JH, Kwon IC, Jeong SY. Self-assembled hyaluronic acid nanoparticles for lively tumor concentrating on. Biomaterials. 2010;31:106–14.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 54.

    Kamat M, El-Boubbou Ok, Zhu DC, Lansdell T, Lu X, Li W, Huang X. Hyaluronic acid immobilized magnetic nanoparticles for lively concentrating on and imaging of macrophages. Bioconjug Chem. 2010;21:2128–35.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 55.

    Arpicco S, Lerda C, Dalla Pozza E, Costanzo C, Tsapis N, Stella B, Donadelli M, Dando I, Fattal E, Cattel L. Hyaluronic acid-coated liposomes for lively concentrating on of gemcitabine. Eur J Pharm Biopharm. 2013;85:373–80.

    CAS
    PubMed
    Article

    Google Scholar

  • 56.

    Wang G, Gao S, Tian R, Miller-Kleinhenz J, Qin Z, Liu T, Li L, Zhang F, Ma Q, Zhu L. Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo most cancers chemotherapy. ChemMedChem. 2018;13:78–86.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 57.

    Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung S-J, Lee S, Chen X. Theranostic nanoparticles primarily based on PEGylated hyaluronic acid for the analysis, remedy and monitoring of colon most cancers. Biomaterials. 2012;33:6186–93.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 58.

    Gombotz WR, Wee S. Protein launch from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    CAS
    PubMed
    Article

    Google Scholar

  • 59.

    Lee KY, Mooney DJ. Alginate: properties and biomedical purposes. Prog Polym Sci. 2012;37:106–26.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 60.

    Baghbani F, Moztarzadeh F, Mohandesi JA, Yazdian F, Mokhtari-Dizaji M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast most cancers. Int J Biol Macromol. 2016;93:512–9.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 61.

    Podgórna Ok, Szczepanowicz Ok, Piotrowski M, Gajdošová M, Štěpánek F, Warszyński P. Gadolinium alginate nanogels for theranostic purposes. Coll Surf B. 2017;153:183–9.

    Article
    CAS

    Google Scholar

  • 62.

    Moscovici M. Current and future medical purposes of microbial exopolysaccharides. Entrance Microbiol. 1012;2015:6.


    Google Scholar

  • 63.

    Ding Z, Liu P, Hu D, Sheng Z, Yi H, Gao G, Wu Y, Zhang P, Ling S, Cai L. Redox-responsive dextran primarily based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically focused photodynamic remedy. Biomater Sci. 2017;5:762–71.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 64.

    Hong S-P, Kang SH, Kim DK, Kang BS. Paramagnetic nanoparticle-based concentrating on theranostic agent for c6 rat glioma cell. J Nanomater. 2016; 2016:7617894. https://doi.org/10.1155/2016/7617894.

    CAS
    Article

    Google Scholar

  • 65.

    Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Broaden classical drug administration methods by rising routes utilizing dendrimer drug supply methods: a concise overview. Adv Drug Deliv Rev. 2013;65:1316–30.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 66.

    Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Present progress in structure-based rational drug design marks a brand new mindset in drug discovery. Comput Struc Biotechnol J. 2013;5:e201302011.

    Article

    Google Scholar

  • 67.

    Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos M, Hodoscek M, Golic Grdadolnik S. Methods within the rational drug design. Curr Med Chem. 2011;18:2517–30.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 68.

    Wong PT, Choi SK. Mechanisms of drug launch in nanotherapeutic supply methods. Chem Rev. 2015;115:3388–432.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 69.

    Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V, Nantasenamat C. Laptop-aided drug design of bioactive pure merchandise. Curr Prime Med Chem. 2015;15:1780–800.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 70.

    Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and remedy. Chem Rev. 2016;116:2826–85.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 71.

    Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S. Various purposes of nanomedicine. Acs Nano. 2017;11:2313–81.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 72.

    Mattos BD, Rojas OJ, Magalhaes WLE. Biogenic silica nanoparticles loaded with neem bark extract as inexperienced, slow-release biocide. J Clear Prod. 2017;142:4206–13.

    CAS
    Article

    Google Scholar

  • 73.

    Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Type follows operate: nanoparticle form and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 74.

    Sethi M, Sukumar R, Karve S, Werner ME, Wang EC, Moore DT, Kowalczyk SR, Zhang L, Wang AZ. Impact of drug launch kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale. 2014;6:2321–7.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 75.

    Mattos BD, Tardy BL, Magalhaes WLE, Rojas OJ. Managed launch for crop and wooden safety: current progress towards sustainable and secure nanostructured biocidal methods. J Management Launch. 2017;262:139–50.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 76.

    Siepmann F, Herrmann S, Winter G, Siepmann J. A novel mathematical mannequin quantifying drug launch from lipid implants. J Management Launch. 2008;128:233–40.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 77.

    Ding CZ, Li ZB. A evaluation of drug launch mechanisms from nanocarrier methods. Mater Sci Eng. 2017;76:1440–53.

    CAS
    Article

    Google Scholar

  • 78.

    Lee JH, Yeo Y. Managed drug launch from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 79.

    Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug launch. Chem Rev. 2016;116:2602–63.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 80.

    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.

    Article

    Google Scholar

  • 81.

    Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ. Floor functionalization of nanoparticles with polyethylene glycol: results on protein adsorption and mobile uptake. Acs Nano. 2015;9:6996–7008.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 82.

    Almalik A, Benabdelkamel H, Masood A, Alanazi IO, Alradwan I, Majrashi MA, Alfadda AA, Alghamdi WM, Alrabiah H, Tirelli N, Alhasan AH. Hyaluronic acid coated chitosan nanoparticles diminished the immunogenicity of the shaped protein corona. Sci Rep. 2017;7:10542.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 83.

    Martens TF, Remaut Ok, Deschout H, Engbersen JFJ, Hennink WE, van Steenbergen MJ, Demeester J, De Smedt SC, Braeckmans Ok. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug supply for retinal gene remedy. J Management Launch. 2015;202:83–92.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 84.

    Kolhar P, Anselmo AC, Gupta V, Pant Ok, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Utilizing form results to focus on antibody-coated nanoparticles to lung and mind endothelium. Proc Natl Acad Sci USA. 2013;110:10753–8.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 85.

    Gao WW, Zhang LF. Coating nanoparticles with cell membranes for focused drug supply. J Drug Goal. 2015;23:619–26.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 86.

    Muller J, Bauer KN, Prozeller D, Simon J, Mailander V, Wurm FR, Winzen S, Landfester Ok. Coating nanoparticles with tunable surfactants facilitates management over the protein corona. Biomaterials. 2017;115:1–8.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 87.

    Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles will increase cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 88.

    Jain A, Jain SK. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Service Syst. 2015;32:149–80.

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 89.

    Shen HX, Shi SJ, Zhang ZR, Gong T, Solar X. Coating strong lipid nanoparticles with hyaluronic acid enhances antitumor exercise towards melanoma stem-like cells. Theranostics. 2015;5:755–71.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 90.

    Gao X, Zhang J, Xu Q, Huang Z, Wang YY, Shen Q. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate supply. Drug Dev Ind Pharm. 2017;43:661–7.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 91.

    Wang T, Hou JH, Su C, Zhao L, Shi YJ. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and improve antitumor effectivity by focused drug supply by way of CD44. J Nanobiotechnol. 2017;15:7.

    Article
    CAS

    Google Scholar

  • 92.

    Muro S. Challenges in design and characterization of ligand-targeted drug supply methods. J Management Launch. 2012;164:125–37.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 93.

    Kou L, Solar J, Zhai Y, He Z. The endocytosis and intracellular destiny of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8:1–10.

    CAS
    Article

    Google Scholar

  • 94.

    Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular concentrating on supply by way of non-endocytic uptake pathways. Drug supply. 2017;24:45–55.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 95.

    Salatin S, Yari Khosroushahi A. Overviews on the mobile uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21:1668–86.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 96.

    Anirudhan TS, Nair AS. Temperature and ultrasound delicate gatekeepers for the managed launch of chemotherapeutic medicine from mesoporous silica nanoparticles. J Mater Chem B. 2018;6:428–39.

    CAS
    Article

    Google Scholar

  • 97.

    Al-Ahmady Z, Kostarelos Ok. Chemical parts for the design of temperature-responsive vesicles as most cancers therapeutics. Chem Rev. 2016;116:3883–918.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 98.

    Bai Y, Xie FY, Tian W. Managed self-assembly of thermo-responsive amphiphilic h-shaped polymer for adjustable drug launch. Chin J Polym Sci. 2018;36:406–16.

    CAS
    Article

    Google Scholar

  • 99.

    Zhang Z, Zhang D, Wei L, Wang X, Xu YL, Li HW, Ma M, Chen B, Xiao LH. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for mobile imaging and managed releasing of drug to dwelling cells. Coll Surf B. 2017;159:905–12.

    CAS
    Article

    Google Scholar

  • 100.

    Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Tune H, Chen Q, Zhu X. Mild/magnetic hyperthermia triggered drug launched from multi-functional thermo-sensitive magnetoliposomes for exact most cancers synergetic theranostics. J Management Launch. 2017;272:145–58.

    PubMed
    Article
    CAS
    PubMed Central

    Google Scholar

  • 101.

    Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic brokers for thermo-chemotherapy remedy of most cancers. Nanoscale. 2014;6:11553–73.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 102.

    Mathiyazhakan M, Wiraja C, Xu CJ: A Concise Evaluation of Gold Nanoparticles-Based mostly Picture-Responsive Liposomes for Managed Drug Supply. NanoMicro Letters 2018, 10.

  • 103.

    Xu L, Qiu LZ, Sheng Y, Solar YX, Deng LH, Li XQ, Bradley M, Zhang R. Biodegradable pH-responsive hydrogels for managed dual-drug launch. J Mater Chem B. 2018;6:510–7.

    CAS
    Article

    Google Scholar

  • 104.

    Ma GL, Lin WF, Yuan ZF, Wu J, Qian HF, Xua LB, Chen SF. Improvement of ionic power/pH/enzyme triple-responsive zwitterionic hydrogel of the blended l-glutamic acid and l-lysine polypeptide for site-specific drug supply. J Mater Chem B. 2017;5:935–43.

    CAS
    Article

    Google Scholar

  • 105.

    Grillo R, Gallo J, Stroppa DG, Carbo-Argibay E, Lima R, Fraceto LF, Banobre-Lopez M. Sub-micrometer magnetic nanocomposites: insights into the impact of magnetic nanoparticles interactions on the optimization of SAR and MRI efficiency. Acs Appl Mater Interfaces. 2016;8:25777–87.

    CAS
    PubMed
    Article

    Google Scholar

  • 106.

    Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan JJ, Phan MH. Superparamagnetic nanoparticles encapsulated in lipid vesicles for superior magnetic hyperthermia and biodetection. J Appl Phys. 2016;119:083904.

    Article
    CAS

    Google Scholar

  • 107.

    Ulbrich Ok, Hola Ok, Subr V, Bakandritsos A, Tucek J, Zboril R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and scientific research. Chem Rev. 2016;116:5338–431.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 108.

    Chen CW, Syu WJ, Huang TC, Lee YC, Hsiao JK, Huang KY, Yu HP, Liao MY, Lai PS. Encapsulation of Au/Fe3O4 nanoparticles right into a polymer nanoarchitecture with mixed close to infrared-triggered chemo-photothermal remedy primarily based on intracellular secondary protein understanding. J Mater Chem B. 2017;5:5774–82.

    CAS
    Article

    Google Scholar

  • 109.

    Portero A, Remunan-Lopez C, Criado M, Alonso M. Reacetylated chitosan microspheres for managed supply of anti-microbial brokers to the gastric mucosa. J Microencapsul. 2002;19:797–809.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 110.

    Artursson P, Lindmark T, Davis SS, Illum L. Impact of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11:1358–61.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 111.

    Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin utilizing chitosan nanoparticles. Pharm Res. 1999;16:1576–81.

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 112.

    De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a brand new car for the development of the supply of medicine to the ocular floor. Utility to cyclosporin A. Int J Pharm. 2001;224:159–68.

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 113.

    Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein supply: in vivo analysis of insulin-loaded formulations. J Management Launch. 2012;157:383–90.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 114.

    Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves L. Chitosan Nanoparticles as a mucoadhesive drug supply system for ocular administration. Mar Medicine. 2017;15:370.

    PubMed Central
    Article

    Google Scholar

  • 115.

    Pistone S, Goycoolea FM, Younger A, Smistad G, Hiorth M. Formulation of polysaccharide-based nanoparticles for native administration into the oral cavity. Eur J Pharm Sci. 2017;96:381–9.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 116.

    Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug supply to the mind. Asian J Pharm Sci. 2018;13:72–81.

    Article

    Google Scholar

  • 117.

    Jain A, Jain SK. Optimization of chitosan nanoparticles for colon tumors utilizing experimental design methodology. Artif Cells Nanomed Biotechnol. 2016;44:1917–26.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 118.

    Sosnik A. Alginate particles as platform for drug supply by the oral route: state-of-the-art. ISRN Pharm. 2014;2014:926157.

    PubMed
    PubMed Central

    Google Scholar

  • 119.

    Patil NH, Devarajan PV. Insulin-loaded alginic acid nanoparticles for sublingual supply. Drug Deliv. 2016;23:429–36.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 120.

    Haque S, Md S, Sahni JK, Ali J, Baboota S. Improvement and analysis of mind focused intranasal alginate nanoparticles for remedy of melancholy. J Psychiatr Res. 2014;48:1–12.

    PubMed
    Article

    Google Scholar

  • 121.

    Román JV, Galán MA, del Valle EMM. Preparation and preliminary analysis of alginate crosslinked microcapsules as potential drug supply system (DDS) for human lung most cancers remedy. Biomed Phys Eng Expr. 2016;2:035015.

    Article

    Google Scholar

  • 122.

    Garrait G, Beyssac E, Subirade M. Improvement of a novel drug supply system: chitosan nanoparticles entrapped in alginate microparticles. J Microencapsul. 2014;31:363–72.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 123.

    Costa J, Silva N, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular supply of daptomycin. Eur J Clin Microbiol Infect Dis. 2015;34:1255–62.

    CAS
    PubMed
    Article

    Google Scholar

  • 124.

    Goswami S, Naik S. Pure gums and its pharmaceutical software. J Sci Progressive Res. 2014;3:112–21.


    Google Scholar

  • 125.

    Laffleur F, Michalek M. Modified xanthan gum for buccal supply—a promising strategy in treating sialorrhea. Int J Biol Macromol. 2017;102:1250–6.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 126.

    Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X. Novel in situ forming hydrogel primarily based on xanthan and chitosan re-gelifying in liquids for native drug supply. Carbohydr Polym. 2018;186:54–63.

    CAS
    PubMed
    Article

    Google Scholar

  • 127.

    Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A. Nasal drug supply: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm. 2017;517:196–202.

    CAS
    PubMed
    Article

    Google Scholar

  • 128.

    Solar B, Zhang M, Shen J, He Z, Fatehi P, Ni Y. Purposes of cellulose-based supplies in sustained drug supply methods. Curr Med Chem. 2017. https://doi.org/10.2174/0929867324666170705143308.

    Article
    PubMed
    PubMed Central

    Google Scholar

  • 129.

    Elseoud WSA, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a service system for the managed launch of repaglinide. Int J Biol Macromol. 2018;111:604–13.

    Article
    CAS

    Google Scholar

  • 130.

    Agarwal T, Narayana SGH, Pal Ok, Pramanik Ok, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug supply. Int J Biol Macromol. 2015;75:409–17.

    CAS
    PubMed
    Article

    Google Scholar

  • 131.

    Hansen Ok, Kim G, Desai KG, Patel H, Olsen KF, Curtis-Fisk J, Tocce E, Jordan S, Schwendeman SP. Feasibility investigation of cellulose polymers for mucoadhesive nasal drug supply purposes. Mol Pharm. 2015;12:2732–41.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 132.

    Bozzuto G, Molinari A. Liposomes as nanomedical gadgets. Int J Nanomed. 2015;10:975.

    CAS
    Article

    Google Scholar

  • 133.

    Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug supply. Entrance Pharm. 2015;6:286.

    Article
    CAS

    Google Scholar

  • 134.

    Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal supply of medicine and bioactive brokers. ACS Biomater Sci Eng. 2017;3:1262–72.

    CAS
    Article

    Google Scholar

  • 135.

    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki Ok. Liposome: classification, preparation, and purposes. Nanoscale Res Lett. 2013;8:102.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 136.

    Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes enhance chemotherapeutic efficacy of mixture towards head and neck squamous cell carcinoma. BioMed res int. 2014;2014:424239.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 137.

    Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailor-made liposomes for drug supply utilizing a module-based micro continuous-flow system. Sci Rep. 2017;7:12045.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 138.

    Zylberberg C, Matosevic S. Pharmaceutical liposomal drug supply: a evaluation of recent supply methods and a have a look at the regulatory panorama. Drug Deliv. 2016;23:3319–29.

    CAS
    PubMed
    Article

    Google Scholar

  • 139.

    Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with organic molecules: creating chemistries that facilitate nanotechnology. Chem Rev. 2013;113:1904–2074.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 140.

    Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in drugs: therapeutic purposes and developments. Clin Pharmacol Ther. 2008;83:761–9.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 141.

    Miyata Ok, Christie RJ, Kataoka Ok. Polymeric micelles for nano-scale drug supply. React Funct Polym. 2011;71:227–34.

    CAS
    Article

    Google Scholar

  • 142.

    Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug supply system to reinforce bioavailability of poorly water-soluble medicine. J Drug Deliv. 2013;2013:340315.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 143.

    Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative elements for drug supply. Design Monomers Polym. 2012;15:465–521.

    CAS
    Article

    Google Scholar

  • 144.

    Devarajan PV, Jain S. Focused drug supply: ideas and design. Berlin: Springer; 2016.


    Google Scholar

  • 145.

    Mourya V, Inamdar N, Nawale R, Kulthe S. Polymeric micelles: common issues and their purposes. Ind J Pharm Educ Res. 2011;45:128–38.


    Google Scholar

  • 146.

    Wakaskar RR. Polymeric micelles for drug supply. Int J Drug Dev Res. 2017;9:1–2.


    Google Scholar

  • 147.

    Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug supply: from structural frameworks to current preclinical research. J Management Launch. 2017;248:96–116.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 148.

    Li Q, Lai KL, Chan PS, Leung SC, Li HY, Fang Y, To KK, Choi CHJ, Gao QY, Lee TW. Micellar supply of dasatinib for the inhibition of pathologic mobile processes of the retinal pigment epithelium. Coll Surf B. 2016;140:278–86.

    CAS
    Article

    Google Scholar

  • 149.

    Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK. Hyaluronic acid-conjugated polyamidoamine dendrimers for focused supply of three, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic most cancers cells. Coll Surf B. 2015;136:413–23.

    CAS
    Article

    Google Scholar

  • 150.

    Zhu J, Shi X. Dendrimer-based nanodevices for focused drug supply purposes. J Mater Chem B. 2013;1:4199–211.

    CAS
    Article

    Google Scholar

  • 151.

    Madaan Ok, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and concentrating on: drug-dendrimer interactions and toxicity points. J Pharm Bioallied Sci. 2014;6:139.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 152.

    Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: purposes in numerous routes of drug administration. J Pharm Sci. 2008;97:123–43.

    CAS
    PubMed
    Article

    Google Scholar

  • 153.

    Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa-Ferreyra C, Mercado-Curiel R, Manríquez J, Bustos E. Purposes of dendrimers in drug supply brokers, analysis, remedy, and detection. J Nanomater. 2014;2014:39.

    Article
    CAS

    Google Scholar

  • 154.

    Tripathy S, Das M. Dendrimers and their purposes as novel drug supply carriers. J Appl Pharm Sci. 2013;3:142–9.


    Google Scholar

  • 155.

    Kesharwani P, Jain Ok, Jain NK. Dendrimer as nanocarrier for drug supply. Progr Polym Sci. 2014;39:268–307.

    CAS
    Article

    Google Scholar

  • 156.

    Jain Ok, Gupta U, Jain NK. Dendronized nanoconjugates of lysine and folate for remedy of most cancers. Eur J Pharm Biopharm. 2014;87:500–9.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 157.

    Kaur A, Jain Ok, Mehra NK, Jain N. Improvement and characterization of floor engineered PPI dendrimers for focused drug supply. Artif Cells Nanomed Biotechnol. 2017;45:414–25.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 158.

    Choi S-J, Lee JK, Jeong J, Choy J-H. Toxicity analysis of inorganic nanoparticles: issues and challenges. Mol Cell Toxicol. 2013;9:205–10.

    CAS
    Article

    Google Scholar

  • 159.

    Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W. Distinctive roles of gold nanoparticles in drug supply, concentrating on and imaging purposes. Molecules. 2017;22:1445.

    Article
    CAS

    Google Scholar

  • 160.

    Prusty Ok, Swain SK. Nano silver embellished polyacrylamide/dextran nanohydrogels hybrid composites for drug supply purposes. Mater Sci Eng. 2018;85:130–41.

    CAS
    Article

    Google Scholar

  • 161.

    Marcu A, Pop S, Dumitrache F, Mocanu M, Niculite C, Gherghiceanu M, Lungu C, Fleaca C, Ianchis R, Barbut A. Magnetic iron oxide nanoparticles as drug supply system in breast most cancers. Appl Surf Sci. 2013;281:60–5.

    CAS
    Article

    Google Scholar

  • 162.

    Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble medicine. Asian J Pharm Sci. 2015;10:13–23.

    Article

    Google Scholar

  • 163.

    Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble medicine ready by bottom-up applied sciences. Int J Pharm. 2015;495:738–49.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 164.

    Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug supply. Eur J Pharm Sci. 2017;99:137–46.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 165.

    McNamara Ok, Tofail SA. Nanoparticles in biomedical purposes. Adv Phys. 2017;2:54–88.


    Google Scholar

  • 166.

    Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic nanoparticles: from design and synthesis to actual world purposes. Nanomaterials. 2017;7:243.

    PubMed Central
    Article
    CAS

    Google Scholar

  • 167.

    Prasad PN. Nanophotonics. New York: Wiley; 2004.

    Ebook

    Google Scholar

  • 168.

    Volkov Y. Quantum dots in nanomedicine: current developments, advances and unresolved points. Biochem Biophys Res Commun. 2015;468:419–27.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 169.

    Liu J, Lau SK, Varma VA, Moffitt RA, Caldwell M, Liu T, Younger AN, Petros JA, Osunkoya AO, Krogstad T. Molecular mapping of tumor heterogeneity on scientific tissue specimens with multiplexed quantum dots. ACS Nano. 2010;4:2755–65.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 170.

    Xu G, Zeng S, Zhang B, Swihart MT, Yong Ok-T, Prasad PN. New technology cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev. 2016;116:12234–327.

    CAS
    Article

    Google Scholar

  • 171.

    Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA, Chavva SR, Vangara A, Sinha SS, Jones S, Sardar D. Multifunctional biocompatible graphene oxide quantum dots embellished magnetic nanoplatform for environment friendly seize and two-photon imaging of uncommon tumor cells. ACS Appl Mater Interfaces. 2015;7:10935–43.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 172.

    Han H-S, Niemeyer E, Huang Y, Kamoun WS, Martin JD, Bhaumik J, Chen Y, Roberge S, Cui J, Martin MR. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc Natl Acad Sci. 2015;112:1350–5.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 173.

    So M-Ok, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24:339.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 174.

    Zheng F-F, Zhang P-H, Xi Y, Chen J-J, Li L-L, Zhu J-J. Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug supply and real-time monitoring of drug launch. Anal Chem. 2015;87:11739–45.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 175.

    Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, Ling Y-C, Chang J-Y. Utility of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug supply. J Mater Chem B. 2015;3:651–64.

    CAS
    Article

    Google Scholar

  • 176.

    Olerile LD, Liu Y, Zhang B, Wang T, Mu S, Zhang J, Selotlegeng L, Zhang N. Close to-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for most cancers theragnostic. Coll Surf B. 2017;150:121–30.

    CAS
    Article

    Google Scholar

  • 177.

    Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-Delicate ZnO quantum dots–doxorubicin nanoparticles for lung most cancers focused drug supply. ACS Appl Mater Interfaces. 2016;8:22442–50.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 178.

    Balaji AB, Pakalapati H, Khalid M, Walvekar R, Siddiqui H. Pure and artificial biocompatible and biodegradable polymers. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites: processing, properties and purposes. Woodhead Publishing sequence in composites science and engineering. Duxford: Woodhead Publishing; 2017. p. 3–32.


    Google Scholar

  • 179.

    Bassas-Galia M, Follonier S, Pusnik M, Zinn M. Pure polymers: a supply of inspiration. In: Bioresorbable polymers for biomedical purposes. New York: Elsevier; 2017. p. 31–64.

    Chapter

    Google Scholar

  • 180.

    Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. BioMed Res Int. 2014;2014:180549.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 181.

    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug supply methods. Adv Drug Deliv Rev. 2008;60:1650–62.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 182.

    Poole-Warren L, Patton A. Introduction to biomedical polymers and biocompatibility. In: Biosynthetic polymers for medical purposes. New York: Elsevier; 2016. p. 3–31.

    Chapter

    Google Scholar

  • 183.

    Pertici G. Introduction to bioresorbable polymers for biomedical purposes. In: Biosynthetic polymers for medical purposes. New York: Elsevier; 2016. p. 3–29.

    Chapter

    Google Scholar

  • 184.

    Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug supply methods. Mar Medicine. 2016;14:34.

    PubMed Central
    Article
    CAS

    Google Scholar

  • 185.

    Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as managed launch service for native drug supply to the internal ear. Nanoscale Res Lett. 2014;9:343.

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • 186.

    Robinson M, Zhang X. The world medicines state of affairs. Conventional medicines: world state of affairs, points and challenges. Geneva: World Well being Group; 2011. p. 1–12.


    Google Scholar

  • 187.

    Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH. Discovery and resupply of pharmacologically lively plant-derived pure merchandise: a evaluation. Biotechnol Adv. 2015;33:1582–614.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 188.

    David B, Wolfender J-L, Dias DA. The pharmaceutical trade and pure merchandise: historic standing and new developments. Phytochem Rev. 2015;14:299–315.

    CAS
    Article

    Google Scholar

  • 189.

    Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT. A short evaluation on the appliance of nanoparticle enclosed natural drugs for the remedy of infective endocarditis. Biomed Pharm. 2017;87:321–31.

    CAS
    Article

    Google Scholar

  • 190.

    Heinrich M. Ethnopharmacology within the twenty first century-grand challenges. Entrance Pharm. 2010;1:8.

    Article

    Google Scholar

  • 191.

    Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of upper crops in lead compound discovery packages. J Nat Prod. 2011;74:1539–55.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 192.

    Yuan H, Ma Q, Ye L, Piao G. The normal drugs and trendy drugs from pure merchandise. Molecules. 2016;21:559.

    Article
    CAS

    Google Scholar

  • 193.

    Patra JK, Das G, Baek Ok-H. In the direction of a greener setting: synthesis and purposes of inexperienced nanoparticles. Pak J Agric Sci. 2016;53:59–79.


    Google Scholar

  • 194.

    Duncan R, Gaspar R. Nanomedicine (s) underneath the microscope. Mol Pharm. 2011;8:2101–41.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 195.

    Ramana KV, Singhal SS, Reddy AB. Therapeutic potential of pure pharmacological brokers within the remedy of human illnesses. BioMed Res Int. 2014;2014:573452.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 196.

    Guo W. Inexperienced expertise for nanoparticles in biomedical purposes. In: Rai M, Posten C, editors. Inexperienced biosynthesis of nanoparticles: mechanisms and purposes. Wallington: CABI; 2013.


    Google Scholar

  • 197.

    Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in most cancers remedy: challenges, alternatives, and scientific purposes. J Management Launch. 2015;200:138–57.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 198.

    Brigger I, Dubernet C, Couvreur P. Nanoparticles in most cancers remedy and analysis. Adv Drug Deliv Rev. 2002;54:631–51.

    CAS
    Article

    Google Scholar

  • 199.

    Yohan D, Chithrani BD. Purposes of nanoparticles in nanomedicine. J Biomed Nanotechnol. 2014;10:2371–92.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 200.

    Ambesh P, Campia U, Obiagwu C, Bansal R, Shetty V, Hollander G, Shani J. Nanomedicine in coronary artery illness. Indian Coronary heart J. 2017;69:244–51.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 201.

    Grazu V, Moros M, Sánchez-Espinel C. Nanocarriers as nanomedicines: design ideas and up to date advances. In: Frontiers of nanoscience. Vol. 4, New York: Elsevier; 2012. p. 337–440.

  • 202.

    Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Current progress in nanomedicine: therapeutic, diagnostic and theranostic purposes. Curr Opin Biotechnol. 2013;24:1159–66.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 203.

    Devasena T. Diagnostic and therapeutic nanomaterials. In: Therapeutic and diagnostic nanomaterials. New York: Springer; 2017. p. 1–13.

  • 204.

    Ventola CL. Progress in nanomedicine: authorized and investigational nanodrugs. Pharm Ther. 2017;42:742.


    Google Scholar

  • 205.

    Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: from bench to bedside and past. AAPS J. 2016;18:1373–8.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 206.

    Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang X-J. Progressive pharmaceutical growth primarily based on distinctive properties of nanoscale supply formulation. Nanoscale. 2013;5:8307–25.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 207.

    Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a evaluation of their preparation, properties, and medical purposes. Molecules. 2015;20:16540–65.

    Article
    CAS

    Google Scholar

  • 208.

    Metz KM, Sanders SE, Pender JP, Dix MR, Hinds DT, Quinn SJ, Ward AD, Duffy P, Cullen RJ, Colavita PE. Inexperienced synthesis of steel nanoparticles by way of pure extracts: the biogenic nanoparticle corona and its results on reactivity. ACS Maintain Chem Eng. 2015;3:1610–7.

    CAS
    Article

    Google Scholar

  • 209.

    Paul D, Sinha SN. Extracellular synthesis of silver nanoparticles utilizing Pseudomonas aeruginosa KUPSB12 and its antibacterial exercise. JJBS. 2014;7:245–50.

    Article

    Google Scholar

  • 210.

    Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen Ok. Isolation and identification of E. coli micro organism for the synthesis of silver nanoparticles: characterization of the particles and research of antibacterial exercise. Eur J Exp Biol. 2015;5:65–70.

    CAS

    Google Scholar

  • 211.

    Iravani S. Micro organism in nanoparticle synthesis: present standing and future prospects. Int Sch Res Notices. 2014;2014:359316.

    PubMed
    PubMed Central

    Google Scholar

  • 212.

    Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles utilizing plant extracts. Biotechnol Adv. 2013;31:346–56.

    CAS
    Article

    Google Scholar

  • 213.

    Khan HA, Sakharkar MK, Nayak A, Kishore U, Khan A. 14-nanoparticles for biomedical purposes: an summary. In: Narayan R, editor. Nanobiomaterials. Cambridge: Woodhead Publishing; 2018. p. 357–84.

    Chapter

    Google Scholar

  • 214.

    Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Pure polymers: polysaccharides and their derivatives for biomedical purposes. In: Pure and artificial biomedical polymers. New York: Elsevier; 2014. p. 67–89.

    Chapter

    Google Scholar

  • 215.

    Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial brokers. Molecules. 2015;20:8856–74.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 216.

    Pajardi G, Rapisarda V, Somalvico F, Scotti A, Russo GL, Ciancio F, Sgrò A, Nebuloni M, Allevi R, Torre ML. Pores and skin substitutes primarily based on allogenic fibroblasts or keratinocytes for power wounds not responding to standard remedy: a retrospective observational research. Int Wound J. 2016;13:44–52.

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 217.

    Rahimi G, Alizadeh F, Khodavandi A. Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial exercise towards Escherichia coli and Staphylococcus aureus. Trop J Pharm Res. 2016;15:371–5.

    CAS
    Article

    Google Scholar

  • 218.

    Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized utilizing aqueous extract of Artemisia absinthium. Phytopathology. 2015;105:1183–90.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 219.

    Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial efficiency of Ocimum basilicum, and Ocimum sanctum (L.) utilizing silver nanoparticles. Saudi J Biol Sci. 2017;24:1294–305.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 220.

    Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer exercise. Coll Surf B. 2013;108:80–4.

    CAS
    Article

    Google Scholar

  • 221.

    Patra JK, Ali MS, Oh I-G, Baek Ok-H. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal exercise of inexperienced biosynthesized magnetic Fe3O4 nanoparticles utilizing the aqueous extract of corn (Zea mays L.) ear leaves. Artif Cells Nanomed Biotechnol. 2017;45:349–56.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 222.

    Patra JK, Baek Ok-H. Antibacterial exercise and synergistic antibacterial potential of biosynthesized silver nanoparticles towards foodborne pathogenic micro organism together with its anticandidal and antioxidant results. Entrance Microbiol. 2017;8:167.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 223.

    Patra JK, Kwon Y, Baek Ok-H. Inexperienced biosynthesis of gold nanoparticles by onion peel extract: synthesis, characterization and organic actions. Adv Powder Technol. 2016;27:2204–13.

    CAS
    Article

    Google Scholar

  • 224.

    Patra JK, Baek Ok-H. Biosynthesis of silver nanoparticles utilizing aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic exercise and antioxidant potential. IET Nanobiotechnol. 2016;10:326–33.

    PubMed
    Article
    PubMed Central

    Google Scholar

  • 225.

    Patra JK, Baek Ok-H. Comparative research of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant actions of gold nanoparticles biosynthesized utilizing fruit waste supplies. Int J Nanomed. 2016;11:4691.

    CAS
    Article

    Google Scholar

  • 226.

    Patra JK, Baek Ok-H. Inexperienced synthesis of silver chloride nanoparticles utilizing Prunus persica L. outer peel extract and investigation of antibacterial, anticandidal, antioxidant potential. Inexperienced Chem Lett Rev. 2016;9:132–42.

    CAS
    Article

    Google Scholar

  • 227.

    Patra JK, Das G, Baek Ok-H. Phyto-mediated biosynthesis of silver nanoparticles utilizing the rind extract of watermelon (Citrullus lanatus) underneath photo-catalyzed situation and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol B. 2016;161:200–10.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 228.

    Wilczewska AZ, Niemirowicz Ok, Markiewicz KH, Automobile H. Nanoparticles as drug supply methods. Pharmacol Rep. 2012;64:1020–37.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 229.

    Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res. 2017;126:84–96.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 230.

    Dias DA, City S, Roessner U. A historic overview of pure merchandise in drug discovery. Metabolites. 2012;2:303–36.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 231.

    Gupta U, Sharma S, Khan I, Gothwal A, Sharma AK, Singh Y, Chourasia MK, Kumar V. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles primarily based on chitosan. Int J Biol Macromol. 2017;98:810–9.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 232.

    Chang C-H, Huang W-Y, Lai C-H, Hsu Y-M, Yao Y-H, Chen T-Y, Wu J-Y, Peng S-F, Lin Y-H. Improvement of novel nanoparticles shelled with heparin for berberine supply to deal with Helicobacter pylori. Acta Biomaterialia. 2011;7:593–603.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 233.

    Aldawsari HM, Hosny KM. Stable lipid nanoparticles of Vancomycin loaded with Ellagic acid as a device for overcoming nephrotoxic uncomfortable side effects: preparation, characterization, and nephrotoxicity analysis. J Drug Deliv Sci Technol. 2018;45:76–80.

    CAS
    Article

    Google Scholar

  • 234.

    Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. Enhancing oral bioavailability of quercetin utilizing novel soluplus polymeric micelles. Nanoscale Res Lett. 2014;9:684.

    PubMed Central
    Article
    CAS

    Google Scholar

  • 235.

    Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug supply. ACS Nano. 2014;8:6986–97.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 236.

    Purama RK, Goswami P, Khan AT, Goyal A. Structural evaluation and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym. 2009;76:30–5.

    CAS
    Article

    Google Scholar

  • 237.

    Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009;30:3588–96.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 238.

    Barenholz YC. Doxil®—the primary FDA-approved nano-drug: classes realized. J Management Launch. 2012;160:117–34.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 239.

    Maeng JH, Lee D-H, Jung KH, Bae Y-H, Park I-S, Jeong S, Jeon Y-S, Shim C-Ok, Kim W, Kim J. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver most cancers. Biomaterials. 2010;31:4995–5006.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 240.

    Bonechi C, Martini S, Ciani L, Lamponi S, Rebmann H, Rossi C, Ristori S. Utilizing liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS ONE. 2012;7:e41438.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 241.

    Noorafshan A, Ashkani-Esfahani S. A evaluation of therapeutic results of curcumin. Curr Pharm Des. 2013;19:2032–46.

    CAS
    PubMed

    Google Scholar

  • 242.

    Wei X, Senanayake TH, Bohling A, Vinogradov SV. Focused nanogel conjugate for improved stability and mobile permeability of curcumin: synthesis, pharmacokinetics, and tumor progress inhibition. Mol Pharm. 2014;11:3112–22.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 243.

    Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its software in most cancers. Int J Nanomed. 2017;12:6027.

    Article

    Google Scholar

  • 244.

    Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C. Improved bioavailability of curcumin in liposomes ready utilizing a pH-driven, natural solvent-free, simply scalable course of. RSC Adv. 2017;7:25978–86.

    CAS
    Article

    Google Scholar

  • 245.

    Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Important oils loaded in nanosystems: a creating technique for a profitable therapeutic strategy. Evid Based mostly Complement Alternat Med. 2014;2014:651593.

    PubMed
    PubMed Central

    Google Scholar

  • 246.

    Sainz V, Conniot J, Matos AI, Peres C, Zupanǒiǒ E, Moura L, Silva LC, Florindo HF, Gaspar RS. Regulatory elements on nanomedicines. Biochem Biophys Res Commun. 2015;468:504–10.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 247.

    Hassan S, Prakash G, Ozturk AB, Saghazadeh S, Sohail MF, Search engine optimisation J, Dokmeci MR, Zhang YS, Khademhosseini A. Evolution and scientific translation of drug supply nanomaterials. Nano Right this moment. 2017;15:91–106.

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 248.

    Agrahari V, Agrahari V. Facilitating the interpretation of nanomedicines to a scientific product: challenges and alternatives. Drug Discov Right this moment. 2018;23(5):974–91.

    PubMed
    Article

    Google Scholar

  • 249.

    Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a evaluation of nanotherapeutics at the moment present process scientific trials. Wiley Interdiscip Rev. 2016;2017:9.


    Google Scholar

  • 250.

    Wacker MG, Proykova A, Santos GML. Coping with nanosafety across the globe—regulation vs. innovation. Int J Pharm. 2016;509:95–106.

    CAS
    PubMed
    Article

    Google Scholar

  • 251.

    Lin P-C, Lin S, Wang PC, Sridhar R. Strategies for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–26.

    PubMed
    Article

    Google Scholar

  • 252.

    Grossman JH, Crist RM, Clogston JD. Early growth challenges for drug merchandise containing nanomaterials. AAPS J. 2017;19:92–102.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 253.

    Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N. Nanomedicines: addressing the scientific and regulatory hole. Ann NY Acad Sci. 2014;1313:35–56.

    CAS
    PubMed
    Article
    PubMed Central

    Google Scholar

  • 254.

    Pandit A, Zeugolis DI. Twenty-five years of nano-bio-materials: have we revolutionized healthcare? Fut Med. 2016;11(9):985–7.

    CAS

    Google Scholar

  • 255.

    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluation of FDA-approved supplies and scientific trials so far. Pharm Res. 2016;33:2373–87.

    CAS
    PubMed
    Article

    Google Scholar

  • 256.

    Tran S, DeGiovanni P-J, Piel B, Rai P. Most cancers nanomedicine: a evaluation of current success in drug supply. Clin Transl Med. 2017;6:44.

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 257.

    Anselmo AC, Mitragotri S. Nanoparticles within the clinic. Bioeng Transl Med. 2016;1:10–29.

    PubMed
    PubMed Central

    Google Scholar

  • 258.

    Grumezescu AM. Nanoscale fabrication, optimization, scale-up and organic elements of pharmaceutical nanotechnology. New York: William Andrew; 2017.


    Google Scholar

  • 259.

    Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a evaluation of nanotherapeutics at the moment present process scientific trials. Wiley Interdiscip Rev. 2017;9:e1416.


    Google Scholar

  • 260.

    Drug approvals and databases. https://www.fda.gov/Medicine/InformationOnDrugs/default.htm. Accessed 16 Aug 2018.

  • 261.

    D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM. The evolving panorama of drug merchandise containing nanomaterials in the USA. Nat Nanotechnol. 2017;12:523.

    Hurry Up!