[ad_1]
- 1.
Swamy MK, Sinniah UR. Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological elements. Ind Crops Prod. 2016;87:161–76.
- 2.
Mohanty SK, Swamy MK, Sinniah UR, Anuradha M. Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological elements. Molecules. 1019;2017:22.
- 3.
Rodrigues T, Reker D, Schneider P, Schneider G. Relying on pure merchandise for drug design. Nat Chem. 2016;8:531.
- 4.
Siddiqui AA, Iram F, Siddiqui S, Sahu Ok. Position of pure merchandise in drug discovery course of. Int J Drug Dev Res. 2014;6(2):172–204.
- 5.
Beutler JA. Pure merchandise as a basis for drug discovery. Curr Prot Pharmacol. 2009;46(1):9–11.
- 6.
Thilakarathna SH, Rupasinghe H. Flavonoid bioavailability and makes an attempt for bioavailability enhancement. Vitamins. 2013;5:3367–87.
- 7.
Bonifácio BV, da Silva PB, dos Santos Ramos MA, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug supply methods and natural medicines: a evaluation. Int J Nanomed. 2014;9:1.
- 8.
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Pure product-based nanomedicine: current advances and points. Int J Nanomed. 2015;10:6055.
- 9.
Martinho N, Damgé C, Reis CP. Current advances in drug supply methods. J Biomater Nanobiotechnol. 2011;2:510.
- 10.
Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A evaluation of drug supply methods primarily based on nanotechnology and inexperienced chemistry: inexperienced nanomedicine. Int J Nanomed. 2017;12:2957.
- 11.
Liu Z, Tabakman S, Welsher Ok, Dai H. Carbon nanotubes in biology and drugs: in vitro and in vivo detection, imaging and drug supply. Nano Res. 2009;2:85–120.
- 12.
Orive G, Gascon AR, Hernández RM, Domı́nguez-Gil A, Pedraz JL. Strategies: new approaches to the supply of biopharmaceuticals. Developments Pharmacol Sci. 2004;25:382–7.
- 13.
Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Built-in microsystems for managed drug supply. Adv Drug Deliv Rev. 2004;56:185–98.
- 14.
Arayne MS, Sultana N, Qureshi F. nanoparticles in supply of cardiovascular medicine. Pak J Pharm Sci. 2007;20:340–8.
- 15.
Patra JK, Baek Ok-H. Inexperienced nanobiotechnology: elements affecting synthesis and characterization methods. J Nanomater. 2014;2014:219.
- 16.
Joseph RR, Venkatraman SS. Drug supply to the attention: what advantages do nanocarriers supply? Nanomedicine. 2017;12:683–702.
- 17.
Mirza AZ, Siddiqui FA. Nanomedicine and drug supply: a mini evaluation. Int Nano Lett. 2014;4:94.
- 18.
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternate options towards drug-resistant pathogenic microbes. Molecules. 2016;21:836.
- 19.
Lam P-L, Wong W-Y, Bian Z, Chui C-H, Gambari R. Current advances in inexperienced nanoparticulate methods for drug supply: environment friendly supply and security concern. Nanomedicine. 2017;12:357–85.
- 20.
Haba Y, Kojima C, Harada A, Ura T, Horinaka H, Kono Ok. Preparation of poly (ethylene glycol)-modified poly (amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating capacity. Langmuir. 2007;23:5243–6.
- 21.
Shi X, Solar Ok, Baker JR Jr. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C. 2008;112:8251–8.
- 22.
Park S-H, Oh S-G, Mun J-Y, Han S-S. Loading of gold nanoparticles contained in the DPPC bilayers of liposome and their results on membrane fluidities. Coll Surf B. 2006;48:112–8.
- 23.
de Villiers MM, Aramwit P, Kwon GS. Nanotechnology in drug supply. New York: Springer; 2008.
- 24.
Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic® block copolymers: novel purposeful molecules for gene remedy. Adv Drug Deliv Rev. 2002;54:223–33.
- 25.
Wang N, Feng Y. Elaborating the function of pure products-induced autophagy in most cancers remedy: achievements and artifacts within the cutting-edge. BioMed Res Int. 2015;2015:934207.
- 26.
Ouattara B, Simard RE, Holley RA. Piette GJ-P, Bégin A: Antibacterial exercise of chosen fatty acids and important oils towards six meat spoilage organisms. Int J Meals Microbiol. 1997;37:155–62.
- 27.
Sharma G, Raturi Ok, Dang S, Gupta S, Gabrani R. Combinatorial antimicrobial impact of curcumin with chosen phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res. 2014;16:535–41.
- 28.
Abdelwahab SI, Sheikh BY, Taha MME, How CW, Abdullah R, Yagoub U, El-Sunousi R, Eid EE. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomed. 2013;8:2163.
- 29.
Krauel Ok, Pitaksuteepong T, Davies NM, Rades T. Entrapment of bioactive molecules in poly (alkylcyanoacrylate) nanoparticles. Am J Drug Deliv. 2004;2:251–9.
- 30.
Tan Q, Liu W, Guo C, Zhai G. Preparation and analysis of quercetin-loaded lecithin-chitosan nanoparticles for topical supply. Int J Nanomed. 2011;6:1621.
- 31.
Sanna V, Roggio AM, Siliani S, Piccinini M, Marceddu S, Mariani A, Sechi M. Improvement of novel cationic chitosan-and anionic alginate–coated poly (d, l-lactide-co-glycolide) nanoparticles for managed launch and light-weight safety of resveratrol. Int J Nanomed. 2012;7:5501.
- 32.
Casettari L, Illum L. Chitosan in nasal supply methods for therapeutic medicine. J Management Launch. 2014;190:189–200.
- 33.
Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra Ok, Ferro VA. Delivering pure merchandise and biotherapeutics to enhance drug efficacy. Ther Deliv. 2017;8:947–56.
- 34.
Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based supply of small interfering RNA: challenges for most cancers remedy. Int J Nanomed. 2012;7:3637.
- 35.
McNamara Ok, Tofail SA. Nanosystems: using nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical purposes. Phys Chem Chem Phys. 2015;17:27981–95.
- 36.
Saadeh Y, Vyas D. Nanorobotic purposes in drugs: present proposals and designs. Am J Robotic Surg. 2014;1:4–11.
- 37.
Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L. Nanomaterials for analysis: challenges and purposes in sensible gadgets primarily based on molecular recognition. ACS Appl Mater Interfaces. 2014;6:14745–66.
- 38.
De Jong WH, Borm PJ. Drug supply and nanoparticles: purposes and hazards. Int J Nanomed. 2008;3:133.
- 39.
Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing purposes: a evaluation. Entrance Chem. 2014;2:63.
- 40.
Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Grasp AM, Sokolsky M, Kabanov AV. In the direction of nanomedicines of the longer term: distant magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Management Launch. 2015;219:43–60.
- 41.
Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Current progress on nanostructures for drug supply purposes. J Nanomater. 2016;2016:20.
- 42.
Blanco E, Shen H, Ferrari M. Ideas of nanoparticle design for overcoming organic limitations to drug supply. Nat Biotechnol. 2015;33:941.
- 43.
Kumari A, Kumar V, Yadav S. Nanotechnology: a device to reinforce therapeutic values of pure plant merchandise. Developments Med Res. 2012;7:34–42.
- 44.
Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55:1919–22.
- 45.
Swierczewska M, Han H, Kim Ok, Park J, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev. 2016;99:70–84.
- 46.
Chen Ok, Chen X. Design and growth of molecular imaging probes. Curr Prime Med Chem. 2010;10:1227–36.
- 47.
Yhee JY, Son S, Kim SH, Park Ok, Choi Ok, Kwon IC. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Management Launch. 2014;193:202–13.
- 48.
Lee C-M, Jang D, Kim J, Cheong S-J, Kim E-M, Jeong M-H, Kim S-H, Kim DW, Lim ST, Sohn M-H, et al. Oleyl-Chitosan nanoparticles primarily based on a twin probe for Optical/MR imaging in vivo. Bioconjug Chem. 2011;22:186–92.
- 49.
Yang S-J, Lin F-H, Tsai H-M, Lin C-F, Chin H-C, Wong J-M, Shieh M-J. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials. 2011;32:2174–82.
- 50.
Ryu JH, Na JH, Ko HK, You DG, Park S, Jun E, Yeom HJ, Search engine optimisation DH, Park JH, Jeong SY. Non-invasive optical imaging of cathepsin B with activatable fluorogenic nanoprobes in varied metastatic fashions. Biomaterials. 2014;35:2302–11.
- 51.
Lapčík L, Lapcik L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, construction, properties, and purposes. Chem Rev. 1998;98:2663–84.
- 52.
Kim H, Kim Y, Kim I-H, Kim Ok, Choi Y. ROS-responsive activatable photosensitizing agent for imaging and photodynamic remedy of activated macrophages. Theranostics. 2014;4:1.
- 53.
Choi KY, Chung H, Min KH, Yoon HY, Kim Ok, Park JH, Kwon IC, Jeong SY. Self-assembled hyaluronic acid nanoparticles for lively tumor concentrating on. Biomaterials. 2010;31:106–14.
- 54.
Kamat M, El-Boubbou Ok, Zhu DC, Lansdell T, Lu X, Li W, Huang X. Hyaluronic acid immobilized magnetic nanoparticles for lively concentrating on and imaging of macrophages. Bioconjug Chem. 2010;21:2128–35.
- 55.
Arpicco S, Lerda C, Dalla Pozza E, Costanzo C, Tsapis N, Stella B, Donadelli M, Dando I, Fattal E, Cattel L. Hyaluronic acid-coated liposomes for lively concentrating on of gemcitabine. Eur J Pharm Biopharm. 2013;85:373–80.
- 56.
Wang G, Gao S, Tian R, Miller-Kleinhenz J, Qin Z, Liu T, Li L, Zhang F, Ma Q, Zhu L. Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo most cancers chemotherapy. ChemMedChem. 2018;13:78–86.
- 57.
Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung S-J, Lee S, Chen X. Theranostic nanoparticles primarily based on PEGylated hyaluronic acid for the analysis, remedy and monitoring of colon most cancers. Biomaterials. 2012;33:6186–93.
- 58.
Gombotz WR, Wee S. Protein launch from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.
- 59.
Lee KY, Mooney DJ. Alginate: properties and biomedical purposes. Prog Polym Sci. 2012;37:106–26.
- 60.
Baghbani F, Moztarzadeh F, Mohandesi JA, Yazdian F, Mokhtari-Dizaji M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast most cancers. Int J Biol Macromol. 2016;93:512–9.
- 61.
Podgórna Ok, Szczepanowicz Ok, Piotrowski M, Gajdošová M, Štěpánek F, Warszyński P. Gadolinium alginate nanogels for theranostic purposes. Coll Surf B. 2017;153:183–9.
- 62.
Moscovici M. Current and future medical purposes of microbial exopolysaccharides. Entrance Microbiol. 1012;2015:6.
- 63.
Ding Z, Liu P, Hu D, Sheng Z, Yi H, Gao G, Wu Y, Zhang P, Ling S, Cai L. Redox-responsive dextran primarily based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically focused photodynamic remedy. Biomater Sci. 2017;5:762–71.
- 64.
Hong S-P, Kang SH, Kim DK, Kang BS. Paramagnetic nanoparticle-based concentrating on theranostic agent for c6 rat glioma cell. J Nanomater. 2016; 2016:7617894. https://doi.org/10.1155/2016/7617894.
- 65.
Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Broaden classical drug administration methods by rising routes utilizing dendrimer drug supply methods: a concise overview. Adv Drug Deliv Rev. 2013;65:1316–30.
- 66.
Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Present progress in structure-based rational drug design marks a brand new mindset in drug discovery. Comput Struc Biotechnol J. 2013;5:e201302011.
- 67.
Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos M, Hodoscek M, Golic Grdadolnik S. Methods within the rational drug design. Curr Med Chem. 2011;18:2517–30.
- 68.
Wong PT, Choi SK. Mechanisms of drug launch in nanotherapeutic supply methods. Chem Rev. 2015;115:3388–432.
- 69.
Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V, Nantasenamat C. Laptop-aided drug design of bioactive pure merchandise. Curr Prime Med Chem. 2015;15:1780–800.
- 70.
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and remedy. Chem Rev. 2016;116:2826–85.
- 71.
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S. Various purposes of nanomedicine. Acs Nano. 2017;11:2313–81.
- 72.
Mattos BD, Rojas OJ, Magalhaes WLE. Biogenic silica nanoparticles loaded with neem bark extract as inexperienced, slow-release biocide. J Clear Prod. 2017;142:4206–13.
- 73.
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Type follows operate: nanoparticle form and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.
- 74.
Sethi M, Sukumar R, Karve S, Werner ME, Wang EC, Moore DT, Kowalczyk SR, Zhang L, Wang AZ. Impact of drug launch kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale. 2014;6:2321–7.
- 75.
Mattos BD, Tardy BL, Magalhaes WLE, Rojas OJ. Managed launch for crop and wooden safety: current progress towards sustainable and secure nanostructured biocidal methods. J Management Launch. 2017;262:139–50.
- 76.
Siepmann F, Herrmann S, Winter G, Siepmann J. A novel mathematical mannequin quantifying drug launch from lipid implants. J Management Launch. 2008;128:233–40.
- 77.
Ding CZ, Li ZB. A evaluation of drug launch mechanisms from nanocarrier methods. Mater Sci Eng. 2017;76:1440–53.
- 78.
Lee JH, Yeo Y. Managed drug launch from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.
- 79.
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug launch. Chem Rev. 2016;116:2602–63.
- 80.
Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.
- 81.
Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ. Floor functionalization of nanoparticles with polyethylene glycol: results on protein adsorption and mobile uptake. Acs Nano. 2015;9:6996–7008.
- 82.
Almalik A, Benabdelkamel H, Masood A, Alanazi IO, Alradwan I, Majrashi MA, Alfadda AA, Alghamdi WM, Alrabiah H, Tirelli N, Alhasan AH. Hyaluronic acid coated chitosan nanoparticles diminished the immunogenicity of the shaped protein corona. Sci Rep. 2017;7:10542.
- 83.
Martens TF, Remaut Ok, Deschout H, Engbersen JFJ, Hennink WE, van Steenbergen MJ, Demeester J, De Smedt SC, Braeckmans Ok. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug supply for retinal gene remedy. J Management Launch. 2015;202:83–92.
- 84.
Kolhar P, Anselmo AC, Gupta V, Pant Ok, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Utilizing form results to focus on antibody-coated nanoparticles to lung and mind endothelium. Proc Natl Acad Sci USA. 2013;110:10753–8.
- 85.
Gao WW, Zhang LF. Coating nanoparticles with cell membranes for focused drug supply. J Drug Goal. 2015;23:619–26.
- 86.
Muller J, Bauer KN, Prozeller D, Simon J, Mailander V, Wurm FR, Winzen S, Landfester Ok. Coating nanoparticles with tunable surfactants facilitates management over the protein corona. Biomaterials. 2017;115:1–8.
- 87.
Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles will increase cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.
- 88.
Jain A, Jain SK. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Service Syst. 2015;32:149–80.
- 89.
Shen HX, Shi SJ, Zhang ZR, Gong T, Solar X. Coating strong lipid nanoparticles with hyaluronic acid enhances antitumor exercise towards melanoma stem-like cells. Theranostics. 2015;5:755–71.
- 90.
Gao X, Zhang J, Xu Q, Huang Z, Wang YY, Shen Q. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate supply. Drug Dev Ind Pharm. 2017;43:661–7.
- 91.
Wang T, Hou JH, Su C, Zhao L, Shi YJ. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and improve antitumor effectivity by focused drug supply by way of CD44. J Nanobiotechnol. 2017;15:7.
- 92.
Muro S. Challenges in design and characterization of ligand-targeted drug supply methods. J Management Launch. 2012;164:125–37.
- 93.
Kou L, Solar J, Zhai Y, He Z. The endocytosis and intracellular destiny of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8:1–10.
- 94.
Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular concentrating on supply by way of non-endocytic uptake pathways. Drug supply. 2017;24:45–55.
- 95.
Salatin S, Yari Khosroushahi A. Overviews on the mobile uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21:1668–86.
- 96.
Anirudhan TS, Nair AS. Temperature and ultrasound delicate gatekeepers for the managed launch of chemotherapeutic medicine from mesoporous silica nanoparticles. J Mater Chem B. 2018;6:428–39.
- 97.
Al-Ahmady Z, Kostarelos Ok. Chemical parts for the design of temperature-responsive vesicles as most cancers therapeutics. Chem Rev. 2016;116:3883–918.
- 98.
Bai Y, Xie FY, Tian W. Managed self-assembly of thermo-responsive amphiphilic h-shaped polymer for adjustable drug launch. Chin J Polym Sci. 2018;36:406–16.
- 99.
Zhang Z, Zhang D, Wei L, Wang X, Xu YL, Li HW, Ma M, Chen B, Xiao LH. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for mobile imaging and managed releasing of drug to dwelling cells. Coll Surf B. 2017;159:905–12.
- 100.
Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Tune H, Chen Q, Zhu X. Mild/magnetic hyperthermia triggered drug launched from multi-functional thermo-sensitive magnetoliposomes for exact most cancers synergetic theranostics. J Management Launch. 2017;272:145–58.
- 101.
Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic brokers for thermo-chemotherapy remedy of most cancers. Nanoscale. 2014;6:11553–73.
- 102.
Mathiyazhakan M, Wiraja C, Xu CJ: A Concise Evaluation of Gold Nanoparticles-Based mostly Picture-Responsive Liposomes for Managed Drug Supply. Nano–Micro Letters 2018, 10.
- 103.
Xu L, Qiu LZ, Sheng Y, Solar YX, Deng LH, Li XQ, Bradley M, Zhang R. Biodegradable pH-responsive hydrogels for managed dual-drug launch. J Mater Chem B. 2018;6:510–7.
- 104.
Ma GL, Lin WF, Yuan ZF, Wu J, Qian HF, Xua LB, Chen SF. Improvement of ionic power/pH/enzyme triple-responsive zwitterionic hydrogel of the blended l-glutamic acid and l-lysine polypeptide for site-specific drug supply. J Mater Chem B. 2017;5:935–43.
- 105.
Grillo R, Gallo J, Stroppa DG, Carbo-Argibay E, Lima R, Fraceto LF, Banobre-Lopez M. Sub-micrometer magnetic nanocomposites: insights into the impact of magnetic nanoparticles interactions on the optimization of SAR and MRI efficiency. Acs Appl Mater Interfaces. 2016;8:25777–87.
- 106.
Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan JJ, Phan MH. Superparamagnetic nanoparticles encapsulated in lipid vesicles for superior magnetic hyperthermia and biodetection. J Appl Phys. 2016;119:083904.
- 107.
Ulbrich Ok, Hola Ok, Subr V, Bakandritsos A, Tucek J, Zboril R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and scientific research. Chem Rev. 2016;116:5338–431.
- 108.
Chen CW, Syu WJ, Huang TC, Lee YC, Hsiao JK, Huang KY, Yu HP, Liao MY, Lai PS. Encapsulation of Au/Fe3O4 nanoparticles right into a polymer nanoarchitecture with mixed close to infrared-triggered chemo-photothermal remedy primarily based on intracellular secondary protein understanding. J Mater Chem B. 2017;5:5774–82.
- 109.
Portero A, Remunan-Lopez C, Criado M, Alonso M. Reacetylated chitosan microspheres for managed supply of anti-microbial brokers to the gastric mucosa. J Microencapsul. 2002;19:797–809.
- 110.
Artursson P, Lindmark T, Davis SS, Illum L. Impact of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11:1358–61.
- 111.
Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin utilizing chitosan nanoparticles. Pharm Res. 1999;16:1576–81.
- 112.
De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a brand new car for the development of the supply of medicine to the ocular floor. Utility to cyclosporin A. Int J Pharm. 2001;224:159–68.
- 113.
Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein supply: in vivo analysis of insulin-loaded formulations. J Management Launch. 2012;157:383–90.
- 114.
Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves L. Chitosan Nanoparticles as a mucoadhesive drug supply system for ocular administration. Mar Medicine. 2017;15:370.
- 115.
Pistone S, Goycoolea FM, Younger A, Smistad G, Hiorth M. Formulation of polysaccharide-based nanoparticles for native administration into the oral cavity. Eur J Pharm Sci. 2017;96:381–9.
- 116.
Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug supply to the mind. Asian J Pharm Sci. 2018;13:72–81.
- 117.
Jain A, Jain SK. Optimization of chitosan nanoparticles for colon tumors utilizing experimental design methodology. Artif Cells Nanomed Biotechnol. 2016;44:1917–26.
- 118.
Sosnik A. Alginate particles as platform for drug supply by the oral route: state-of-the-art. ISRN Pharm. 2014;2014:926157.
- 119.
Patil NH, Devarajan PV. Insulin-loaded alginic acid nanoparticles for sublingual supply. Drug Deliv. 2016;23:429–36.
- 120.
Haque S, Md S, Sahni JK, Ali J, Baboota S. Improvement and analysis of mind focused intranasal alginate nanoparticles for remedy of melancholy. J Psychiatr Res. 2014;48:1–12.
- 121.
Román JV, Galán MA, del Valle EMM. Preparation and preliminary analysis of alginate crosslinked microcapsules as potential drug supply system (DDS) for human lung most cancers remedy. Biomed Phys Eng Expr. 2016;2:035015.
- 122.
Garrait G, Beyssac E, Subirade M. Improvement of a novel drug supply system: chitosan nanoparticles entrapped in alginate microparticles. J Microencapsul. 2014;31:363–72.
- 123.
Costa J, Silva N, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular supply of daptomycin. Eur J Clin Microbiol Infect Dis. 2015;34:1255–62.
- 124.
Goswami S, Naik S. Pure gums and its pharmaceutical software. J Sci Progressive Res. 2014;3:112–21.
- 125.
Laffleur F, Michalek M. Modified xanthan gum for buccal supply—a promising strategy in treating sialorrhea. Int J Biol Macromol. 2017;102:1250–6.
- 126.
Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X. Novel in situ forming hydrogel primarily based on xanthan and chitosan re-gelifying in liquids for native drug supply. Carbohydr Polym. 2018;186:54–63.
- 127.
Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A. Nasal drug supply: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm. 2017;517:196–202.
- 128.
Solar B, Zhang M, Shen J, He Z, Fatehi P, Ni Y. Purposes of cellulose-based supplies in sustained drug supply methods. Curr Med Chem. 2017. https://doi.org/10.2174/0929867324666170705143308.
- 129.
Elseoud WSA, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a service system for the managed launch of repaglinide. Int J Biol Macromol. 2018;111:604–13.
- 130.
Agarwal T, Narayana SGH, Pal Ok, Pramanik Ok, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug supply. Int J Biol Macromol. 2015;75:409–17.
- 131.
Hansen Ok, Kim G, Desai KG, Patel H, Olsen KF, Curtis-Fisk J, Tocce E, Jordan S, Schwendeman SP. Feasibility investigation of cellulose polymers for mucoadhesive nasal drug supply purposes. Mol Pharm. 2015;12:2732–41.
- 132.
Bozzuto G, Molinari A. Liposomes as nanomedical gadgets. Int J Nanomed. 2015;10:975.
- 133.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug supply. Entrance Pharm. 2015;6:286.
- 134.
Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal supply of medicine and bioactive brokers. ACS Biomater Sci Eng. 2017;3:1262–72.
- 135.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki Ok. Liposome: classification, preparation, and purposes. Nanoscale Res Lett. 2013;8:102.
- 136.
Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes enhance chemotherapeutic efficacy of mixture towards head and neck squamous cell carcinoma. BioMed res int. 2014;2014:424239.
- 137.
Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailor-made liposomes for drug supply utilizing a module-based micro continuous-flow system. Sci Rep. 2017;7:12045.
- 138.
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug supply: a evaluation of recent supply methods and a have a look at the regulatory panorama. Drug Deliv. 2016;23:3319–29.
- 139.
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with organic molecules: creating chemistries that facilitate nanotechnology. Chem Rev. 2013;113:1904–2074.
- 140.
Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in drugs: therapeutic purposes and developments. Clin Pharmacol Ther. 2008;83:761–9.
- 141.
Miyata Ok, Christie RJ, Kataoka Ok. Polymeric micelles for nano-scale drug supply. React Funct Polym. 2011;71:227–34.
- 142.
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug supply system to reinforce bioavailability of poorly water-soluble medicine. J Drug Deliv. 2013;2013:340315.
- 143.
Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative elements for drug supply. Design Monomers Polym. 2012;15:465–521.
- 144.
Devarajan PV, Jain S. Focused drug supply: ideas and design. Berlin: Springer; 2016.
- 145.
Mourya V, Inamdar N, Nawale R, Kulthe S. Polymeric micelles: common issues and their purposes. Ind J Pharm Educ Res. 2011;45:128–38.
- 146.
Wakaskar RR. Polymeric micelles for drug supply. Int J Drug Dev Res. 2017;9:1–2.
- 147.
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug supply: from structural frameworks to current preclinical research. J Management Launch. 2017;248:96–116.
- 148.
Li Q, Lai KL, Chan PS, Leung SC, Li HY, Fang Y, To KK, Choi CHJ, Gao QY, Lee TW. Micellar supply of dasatinib for the inhibition of pathologic mobile processes of the retinal pigment epithelium. Coll Surf B. 2016;140:278–86.
- 149.
Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK. Hyaluronic acid-conjugated polyamidoamine dendrimers for focused supply of three, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic most cancers cells. Coll Surf B. 2015;136:413–23.
- 150.
Zhu J, Shi X. Dendrimer-based nanodevices for focused drug supply purposes. J Mater Chem B. 2013;1:4199–211.
- 151.
Madaan Ok, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and concentrating on: drug-dendrimer interactions and toxicity points. J Pharm Bioallied Sci. 2014;6:139.
- 152.
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: purposes in numerous routes of drug administration. J Pharm Sci. 2008;97:123–43.
- 153.
Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa-Ferreyra C, Mercado-Curiel R, Manríquez J, Bustos E. Purposes of dendrimers in drug supply brokers, analysis, remedy, and detection. J Nanomater. 2014;2014:39.
- 154.
Tripathy S, Das M. Dendrimers and their purposes as novel drug supply carriers. J Appl Pharm Sci. 2013;3:142–9.
- 155.
Kesharwani P, Jain Ok, Jain NK. Dendrimer as nanocarrier for drug supply. Progr Polym Sci. 2014;39:268–307.
- 156.
Jain Ok, Gupta U, Jain NK. Dendronized nanoconjugates of lysine and folate for remedy of most cancers. Eur J Pharm Biopharm. 2014;87:500–9.
- 157.
Kaur A, Jain Ok, Mehra NK, Jain N. Improvement and characterization of floor engineered PPI dendrimers for focused drug supply. Artif Cells Nanomed Biotechnol. 2017;45:414–25.
- 158.
Choi S-J, Lee JK, Jeong J, Choy J-H. Toxicity analysis of inorganic nanoparticles: issues and challenges. Mol Cell Toxicol. 2013;9:205–10.
- 159.
Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W. Distinctive roles of gold nanoparticles in drug supply, concentrating on and imaging purposes. Molecules. 2017;22:1445.
- 160.
Prusty Ok, Swain SK. Nano silver embellished polyacrylamide/dextran nanohydrogels hybrid composites for drug supply purposes. Mater Sci Eng. 2018;85:130–41.
- 161.
Marcu A, Pop S, Dumitrache F, Mocanu M, Niculite C, Gherghiceanu M, Lungu C, Fleaca C, Ianchis R, Barbut A. Magnetic iron oxide nanoparticles as drug supply system in breast most cancers. Appl Surf Sci. 2013;281:60–5.
- 162.
Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble medicine. Asian J Pharm Sci. 2015;10:13–23.
- 163.
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble medicine ready by bottom-up applied sciences. Int J Pharm. 2015;495:738–49.
- 164.
Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug supply. Eur J Pharm Sci. 2017;99:137–46.
- 165.
McNamara Ok, Tofail SA. Nanoparticles in biomedical purposes. Adv Phys. 2017;2:54–88.
- 166.
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic nanoparticles: from design and synthesis to actual world purposes. Nanomaterials. 2017;7:243.
- 167.
Prasad PN. Nanophotonics. New York: Wiley; 2004.
- 168.
Volkov Y. Quantum dots in nanomedicine: current developments, advances and unresolved points. Biochem Biophys Res Commun. 2015;468:419–27.
- 169.
Liu J, Lau SK, Varma VA, Moffitt RA, Caldwell M, Liu T, Younger AN, Petros JA, Osunkoya AO, Krogstad T. Molecular mapping of tumor heterogeneity on scientific tissue specimens with multiplexed quantum dots. ACS Nano. 2010;4:2755–65.
- 170.
Xu G, Zeng S, Zhang B, Swihart MT, Yong Ok-T, Prasad PN. New technology cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev. 2016;116:12234–327.
- 171.
Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA, Chavva SR, Vangara A, Sinha SS, Jones S, Sardar D. Multifunctional biocompatible graphene oxide quantum dots embellished magnetic nanoplatform for environment friendly seize and two-photon imaging of uncommon tumor cells. ACS Appl Mater Interfaces. 2015;7:10935–43.
- 172.
Han H-S, Niemeyer E, Huang Y, Kamoun WS, Martin JD, Bhaumik J, Chen Y, Roberge S, Cui J, Martin MR. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc Natl Acad Sci. 2015;112:1350–5.
- 173.
So M-Ok, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24:339.
- 174.
Zheng F-F, Zhang P-H, Xi Y, Chen J-J, Li L-L, Zhu J-J. Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug supply and real-time monitoring of drug launch. Anal Chem. 2015;87:11739–45.
- 175.
Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, Ling Y-C, Chang J-Y. Utility of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug supply. J Mater Chem B. 2015;3:651–64.
- 176.
Olerile LD, Liu Y, Zhang B, Wang T, Mu S, Zhang J, Selotlegeng L, Zhang N. Close to-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for most cancers theragnostic. Coll Surf B. 2017;150:121–30.
- 177.
Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-Delicate ZnO quantum dots–doxorubicin nanoparticles for lung most cancers focused drug supply. ACS Appl Mater Interfaces. 2016;8:22442–50.
- 178.
Balaji AB, Pakalapati H, Khalid M, Walvekar R, Siddiqui H. Pure and artificial biocompatible and biodegradable polymers. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites: processing, properties and purposes. Woodhead Publishing sequence in composites science and engineering. Duxford: Woodhead Publishing; 2017. p. 3–32.
- 179.
Bassas-Galia M, Follonier S, Pusnik M, Zinn M. Pure polymers: a supply of inspiration. In: Bioresorbable polymers for biomedical purposes. New York: Elsevier; 2017. p. 31–64.
- 180.
Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. BioMed Res Int. 2014;2014:180549.
- 181.
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug supply methods. Adv Drug Deliv Rev. 2008;60:1650–62.
- 182.
Poole-Warren L, Patton A. Introduction to biomedical polymers and biocompatibility. In: Biosynthetic polymers for medical purposes. New York: Elsevier; 2016. p. 3–31.
- 183.
Pertici G. Introduction to bioresorbable polymers for biomedical purposes. In: Biosynthetic polymers for medical purposes. New York: Elsevier; 2016. p. 3–29.
- 184.
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug supply methods. Mar Medicine. 2016;14:34.
- 185.
Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as managed launch service for native drug supply to the internal ear. Nanoscale Res Lett. 2014;9:343.
- 186.
Robinson M, Zhang X. The world medicines state of affairs. Conventional medicines: world state of affairs, points and challenges. Geneva: World Well being Group; 2011. p. 1–12.
- 187.
Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH. Discovery and resupply of pharmacologically lively plant-derived pure merchandise: a evaluation. Biotechnol Adv. 2015;33:1582–614.
- 188.
David B, Wolfender J-L, Dias DA. The pharmaceutical trade and pure merchandise: historic standing and new developments. Phytochem Rev. 2015;14:299–315.
- 189.
Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT. A short evaluation on the appliance of nanoparticle enclosed natural drugs for the remedy of infective endocarditis. Biomed Pharm. 2017;87:321–31.
- 190.
Heinrich M. Ethnopharmacology within the twenty first century-grand challenges. Entrance Pharm. 2010;1:8.
- 191.
Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of upper crops in lead compound discovery packages. J Nat Prod. 2011;74:1539–55.
- 192.
Yuan H, Ma Q, Ye L, Piao G. The normal drugs and trendy drugs from pure merchandise. Molecules. 2016;21:559.
- 193.
Patra JK, Das G, Baek Ok-H. In the direction of a greener setting: synthesis and purposes of inexperienced nanoparticles. Pak J Agric Sci. 2016;53:59–79.
- 194.
Duncan R, Gaspar R. Nanomedicine (s) underneath the microscope. Mol Pharm. 2011;8:2101–41.
- 195.
Ramana KV, Singhal SS, Reddy AB. Therapeutic potential of pure pharmacological brokers within the remedy of human illnesses. BioMed Res Int. 2014;2014:573452.
- 196.
Guo W. Inexperienced expertise for nanoparticles in biomedical purposes. In: Rai M, Posten C, editors. Inexperienced biosynthesis of nanoparticles: mechanisms and purposes. Wallington: CABI; 2013.
- 197.
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in most cancers remedy: challenges, alternatives, and scientific purposes. J Management Launch. 2015;200:138–57.
- 198.
Brigger I, Dubernet C, Couvreur P. Nanoparticles in most cancers remedy and analysis. Adv Drug Deliv Rev. 2002;54:631–51.
- 199.
Yohan D, Chithrani BD. Purposes of nanoparticles in nanomedicine. J Biomed Nanotechnol. 2014;10:2371–92.
- 200.
Ambesh P, Campia U, Obiagwu C, Bansal R, Shetty V, Hollander G, Shani J. Nanomedicine in coronary artery illness. Indian Coronary heart J. 2017;69:244–51.
- 201.
Grazu V, Moros M, Sánchez-Espinel C. Nanocarriers as nanomedicines: design ideas and up to date advances. In: Frontiers of nanoscience. Vol. 4, New York: Elsevier; 2012. p. 337–440.
- 202.
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Current progress in nanomedicine: therapeutic, diagnostic and theranostic purposes. Curr Opin Biotechnol. 2013;24:1159–66.
- 203.
Devasena T. Diagnostic and therapeutic nanomaterials. In: Therapeutic and diagnostic nanomaterials. New York: Springer; 2017. p. 1–13.
- 204.
Ventola CL. Progress in nanomedicine: authorized and investigational nanodrugs. Pharm Ther. 2017;42:742.
- 205.
Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: from bench to bedside and past. AAPS J. 2016;18:1373–8.
- 206.
Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang X-J. Progressive pharmaceutical growth primarily based on distinctive properties of nanoscale supply formulation. Nanoscale. 2013;5:8307–25.
- 207.
Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a evaluation of their preparation, properties, and medical purposes. Molecules. 2015;20:16540–65.
- 208.
Metz KM, Sanders SE, Pender JP, Dix MR, Hinds DT, Quinn SJ, Ward AD, Duffy P, Cullen RJ, Colavita PE. Inexperienced synthesis of steel nanoparticles by way of pure extracts: the biogenic nanoparticle corona and its results on reactivity. ACS Maintain Chem Eng. 2015;3:1610–7.
- 209.
Paul D, Sinha SN. Extracellular synthesis of silver nanoparticles utilizing Pseudomonas aeruginosa KUPSB12 and its antibacterial exercise. JJBS. 2014;7:245–50.
- 210.
Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen Ok. Isolation and identification of E. coli micro organism for the synthesis of silver nanoparticles: characterization of the particles and research of antibacterial exercise. Eur J Exp Biol. 2015;5:65–70.
- 211.
Iravani S. Micro organism in nanoparticle synthesis: present standing and future prospects. Int Sch Res Notices. 2014;2014:359316.
- 212.
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles utilizing plant extracts. Biotechnol Adv. 2013;31:346–56.
- 213.
Khan HA, Sakharkar MK, Nayak A, Kishore U, Khan A. 14-nanoparticles for biomedical purposes: an summary. In: Narayan R, editor. Nanobiomaterials. Cambridge: Woodhead Publishing; 2018. p. 357–84.
- 214.
Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Pure polymers: polysaccharides and their derivatives for biomedical purposes. In: Pure and artificial biomedical polymers. New York: Elsevier; 2014. p. 67–89.
- 215.
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial brokers. Molecules. 2015;20:8856–74.
- 216.
Pajardi G, Rapisarda V, Somalvico F, Scotti A, Russo GL, Ciancio F, Sgrò A, Nebuloni M, Allevi R, Torre ML. Pores and skin substitutes primarily based on allogenic fibroblasts or keratinocytes for power wounds not responding to standard remedy: a retrospective observational research. Int Wound J. 2016;13:44–52.
- 217.
Rahimi G, Alizadeh F, Khodavandi A. Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial exercise towards Escherichia coli and Staphylococcus aureus. Trop J Pharm Res. 2016;15:371–5.
- 218.
Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized utilizing aqueous extract of Artemisia absinthium. Phytopathology. 2015;105:1183–90.
- 219.
Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial efficiency of Ocimum basilicum, and Ocimum sanctum (L.) utilizing silver nanoparticles. Saudi J Biol Sci. 2017;24:1294–305.
- 220.
Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer exercise. Coll Surf B. 2013;108:80–4.
- 221.
Patra JK, Ali MS, Oh I-G, Baek Ok-H. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal exercise of inexperienced biosynthesized magnetic Fe3O4 nanoparticles utilizing the aqueous extract of corn (Zea mays L.) ear leaves. Artif Cells Nanomed Biotechnol. 2017;45:349–56.
- 222.
Patra JK, Baek Ok-H. Antibacterial exercise and synergistic antibacterial potential of biosynthesized silver nanoparticles towards foodborne pathogenic micro organism together with its anticandidal and antioxidant results. Entrance Microbiol. 2017;8:167.
- 223.
Patra JK, Kwon Y, Baek Ok-H. Inexperienced biosynthesis of gold nanoparticles by onion peel extract: synthesis, characterization and organic actions. Adv Powder Technol. 2016;27:2204–13.
- 224.
Patra JK, Baek Ok-H. Biosynthesis of silver nanoparticles utilizing aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic exercise and antioxidant potential. IET Nanobiotechnol. 2016;10:326–33.
- 225.
Patra JK, Baek Ok-H. Comparative research of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant actions of gold nanoparticles biosynthesized utilizing fruit waste supplies. Int J Nanomed. 2016;11:4691.
- 226.
Patra JK, Baek Ok-H. Inexperienced synthesis of silver chloride nanoparticles utilizing Prunus persica L. outer peel extract and investigation of antibacterial, anticandidal, antioxidant potential. Inexperienced Chem Lett Rev. 2016;9:132–42.
- 227.
Patra JK, Das G, Baek Ok-H. Phyto-mediated biosynthesis of silver nanoparticles utilizing the rind extract of watermelon (Citrullus lanatus) underneath photo-catalyzed situation and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol B. 2016;161:200–10.
- 228.
Wilczewska AZ, Niemirowicz Ok, Markiewicz KH, Automobile H. Nanoparticles as drug supply methods. Pharmacol Rep. 2012;64:1020–37.
- 229.
Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res. 2017;126:84–96.
- 230.
Dias DA, City S, Roessner U. A historic overview of pure merchandise in drug discovery. Metabolites. 2012;2:303–36.
- 231.
Gupta U, Sharma S, Khan I, Gothwal A, Sharma AK, Singh Y, Chourasia MK, Kumar V. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles primarily based on chitosan. Int J Biol Macromol. 2017;98:810–9.
- 232.
Chang C-H, Huang W-Y, Lai C-H, Hsu Y-M, Yao Y-H, Chen T-Y, Wu J-Y, Peng S-F, Lin Y-H. Improvement of novel nanoparticles shelled with heparin for berberine supply to deal with Helicobacter pylori. Acta Biomaterialia. 2011;7:593–603.
- 233.
Aldawsari HM, Hosny KM. Stable lipid nanoparticles of Vancomycin loaded with Ellagic acid as a device for overcoming nephrotoxic uncomfortable side effects: preparation, characterization, and nephrotoxicity analysis. J Drug Deliv Sci Technol. 2018;45:76–80.
- 234.
Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. Enhancing oral bioavailability of quercetin utilizing novel soluplus polymeric micelles. Nanoscale Res Lett. 2014;9:684.
- 235.
Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug supply. ACS Nano. 2014;8:6986–97.
- 236.
Purama RK, Goswami P, Khan AT, Goyal A. Structural evaluation and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym. 2009;76:30–5.
- 237.
Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009;30:3588–96.
- 238.
Barenholz YC. Doxil®—the primary FDA-approved nano-drug: classes realized. J Management Launch. 2012;160:117–34.
- 239.
Maeng JH, Lee D-H, Jung KH, Bae Y-H, Park I-S, Jeong S, Jeon Y-S, Shim C-Ok, Kim W, Kim J. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver most cancers. Biomaterials. 2010;31:4995–5006.
- 240.
Bonechi C, Martini S, Ciani L, Lamponi S, Rebmann H, Rossi C, Ristori S. Utilizing liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS ONE. 2012;7:e41438.
- 241.
Noorafshan A, Ashkani-Esfahani S. A evaluation of therapeutic results of curcumin. Curr Pharm Des. 2013;19:2032–46.
- 242.
Wei X, Senanayake TH, Bohling A, Vinogradov SV. Focused nanogel conjugate for improved stability and mobile permeability of curcumin: synthesis, pharmacokinetics, and tumor progress inhibition. Mol Pharm. 2014;11:3112–22.
- 243.
Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its software in most cancers. Int J Nanomed. 2017;12:6027.
- 244.
Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C. Improved bioavailability of curcumin in liposomes ready utilizing a pH-driven, natural solvent-free, simply scalable course of. RSC Adv. 2017;7:25978–86.
- 245.
Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Important oils loaded in nanosystems: a creating technique for a profitable therapeutic strategy. Evid Based mostly Complement Alternat Med. 2014;2014:651593.
- 246.
Sainz V, Conniot J, Matos AI, Peres C, Zupanǒiǒ E, Moura L, Silva LC, Florindo HF, Gaspar RS. Regulatory elements on nanomedicines. Biochem Biophys Res Commun. 2015;468:504–10.
- 247.
Hassan S, Prakash G, Ozturk AB, Saghazadeh S, Sohail MF, Search engine optimisation J, Dokmeci MR, Zhang YS, Khademhosseini A. Evolution and scientific translation of drug supply nanomaterials. Nano Right this moment. 2017;15:91–106.
- 248.
Agrahari V, Agrahari V. Facilitating the interpretation of nanomedicines to a scientific product: challenges and alternatives. Drug Discov Right this moment. 2018;23(5):974–91.
- 249.
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a evaluation of nanotherapeutics at the moment present process scientific trials. Wiley Interdiscip Rev. 2016;2017:9.
- 250.
Wacker MG, Proykova A, Santos GML. Coping with nanosafety across the globe—regulation vs. innovation. Int J Pharm. 2016;509:95–106.
- 251.
Lin P-C, Lin S, Wang PC, Sridhar R. Strategies for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–26.
- 252.
Grossman JH, Crist RM, Clogston JD. Early growth challenges for drug merchandise containing nanomaterials. AAPS J. 2017;19:92–102.
- 253.
Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, Tamarkin L, Desai N. Nanomedicines: addressing the scientific and regulatory hole. Ann NY Acad Sci. 2014;1313:35–56.
- 254.
Pandit A, Zeugolis DI. Twenty-five years of nano-bio-materials: have we revolutionized healthcare? Fut Med. 2016;11(9):985–7.
- 255.
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluation of FDA-approved supplies and scientific trials so far. Pharm Res. 2016;33:2373–87.
- 256.
Tran S, DeGiovanni P-J, Piel B, Rai P. Most cancers nanomedicine: a evaluation of current success in drug supply. Clin Transl Med. 2017;6:44.
- 257.
Anselmo AC, Mitragotri S. Nanoparticles within the clinic. Bioeng Transl Med. 2016;1:10–29.
- 258.
Grumezescu AM. Nanoscale fabrication, optimization, scale-up and organic elements of pharmaceutical nanotechnology. New York: William Andrew; 2017.
- 259.
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a evaluation of nanotherapeutics at the moment present process scientific trials. Wiley Interdiscip Rev. 2017;9:e1416.
- 260.
Drug approvals and databases. https://www.fda.gov/Medicine/InformationOnDrugs/default.htm. Accessed 16 Aug 2018.
- 261.
D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM. The evolving panorama of drug merchandise containing nanomaterials in the USA. Nat Nanotechnol. 2017;12:523.
Hurry Up!