Thursday, December 1, 2022
HomeNanotechnologyThree-dimensional monolithic micro-LED show pushed by atomically skinny transistor matrix

Three-dimensional monolithic micro-LED show pushed by atomically skinny transistor matrix

[ad_1]

  • 1.

    Nakamura, S., Senoh, M. & Mukai, T. Excessive‐energy InGaN/GaN double‐heterostructure violet gentle emitting diodes. Appl. Phys. Lett. 62, 2390–2392 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Li, G. et al. GaN-based light-emitting diodes on varied substrates: a vital evaluate. Rep. Prog. Phys. 79, 056501 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 3.

    International Packaged GaN LED Market Report (Market Stories World, 2019); https://www.marketreportsworld.com/-global-packaged-gan-led-market-14194592

  • 4.

    Jin, S. X., Li, J., Li, J. Z., Lin, J. Y. & Jiang, H. X. GaN microdisk gentle emitting diodes. Appl. Phys. Lett. 76, 631–633 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Yuan, Y. F. et al. Potential key applied sciences for 6G cell communications. Sci. China Inf. Sci. 63, 183301 (2020).

    Article 

    Google Scholar
     

  • 6.

    Lin, J. Y. & Jiang, H. X. Improvement of microLED. Appl. Phys. Lett. 116, 100502 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Wong, M. S., Nakamura, S. & DenBaars, S. P. Evaluation—progress in excessive efficiency III-nitride micro-light-emitting diodes. ECS J. Stable State Sci. Technol. 9, 015012 (2019).

    Article 

    Google Scholar
     

  • 8.

    Huang, Y., Hsiang, E.-L., Deng, M.-Y. & Wu, S.-T. Mini-LED, micro-LED and OLED shows: current standing and future views. Gentle Sci. Appl. 9, 105 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Liu, Z., Chong, W. C., Wong, Ok. M. & Lau, Ok. M. GaN-based LED micro-displays for wearable purposes. Microelectron. Eng. 148, 98–103 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent shows. Science 325, 977–981 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Liu, Z. J., Chong, W. C., Wong, Ok. M. & Lau, Ok. M. 360 PPI flip-chip mounted lively matrix addressable gentle emitting diode on silicon (LEDoS) micro-displays. J. Disp. Technol. 9, 678–682 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Cok, R. S. et al. Inorganic light-emitting diode shows utilizing micro-transfer printing. J. Soc. Inf. Disp. 25, 589–609 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Zhang, L., Ou, F., Chong, W. C., Chen, Y. & Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—a mass manufacturable method for lively matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26, 137–145 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Tull, B. R. et al. 26.2: Invited paper: excessive brightness, emissive microdisplay by integration of III‐V LEDs with skinny movie silicon transistors. SID Symp. Dig. Tech. Pap. 46, 375–377 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Akinwande, D. et al. Graphene and two-dimensional supplies for silicon expertise. Nature 573, 507–518 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Liu, C. et al. Two-dimensional supplies for next-generation computing applied sciences. Nat. Nanotechnol. 15, 545–557 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metallic dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Fiori, G. et al. Electronics primarily based on two-dimensional supplies. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yu, Z. et al. Realization of room-temperature phonon-limited provider transport in monolayer MoS2 by dielectric and provider screening. Adv. Mater. 28, 547–552 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital gadgets. Nat. Electron. 2, 563–571 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Zhou, J. et al. A library of atomically skinny metallic chalcogenides. Nature 556, 355–359 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Wang, Q. et al. Wafer-scale extremely oriented monolayer MoS2 with massive area sizes. Nano Lett. 20, 7193–7199 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kang, Kibum et al. Excessive-mobility three-atom-thick semiconducting movies with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Tang, H. W. et al. Latest progress in gadgets and circuits primarily based on wafer-scale transition metallic dichalcogenides. Sci. China Inf. Sci. 62, 220401 (2019).

    Article 

    Google Scholar
     

  • 25.

    Goossens, S. et al. Broadband picture sensor array primarily based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Choi, M. et al. Full-color active-matrix natural light-emitting diode show on human pores and skin primarily based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Yu, J. et al. Van der Waals epitaxy of III‐nitride semiconductors primarily based on 2D supplies for versatile purposes. Adv. Mater. 32, 1903407 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional versatile nanoelectronics. Nat. Commun. 5, 5678 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zhuang, Z. et al. Excessive coloration rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv. Funct. Mater. 26, 36–43 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00963-8 (2021).

  • 32.

    Pirkle, A. et al. The impact of chemical residues on the bodily and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Huang, Y. et al. Common mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Struthers, J. D. Solubility and diffusivity of gold, iron, and copper in silicon. J. Appl. Phys. 27, 1560 (1956).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Day, Jacob et al. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 37.

    Smets, Q. et al. Sources of variability in scaled MoS2 FETs. In Proc. 2020 IEEE Worldwide Electron Gadgets Assembly (IEDM) 3.1.1–3.1.4 (IEEE, 2020).

  • 38.

    Smithe, Ok. Ok. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in artificial monolayer MoS2 gadgets. ACS Nano 11, 8456–8463 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Huo, N. et al. Excessive provider mobility in monolayer CVD-grown MoS2 by phonon suppression. Nanoscale 10, 15071–15077 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Polyushkin, D. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Sebastian, A. et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Nomura, Ok. et al. Room-temperature fabrication of clear versatile thin-film transistors utilizing amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Wager, J. F. TFT expertise: developments and alternatives for enchancment. Information Disp. 36, 9–13 (2020).


    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments